

Pelita Harapan University

Dewobroto Adhiwignyo , S.T.,S.Ds.,M.Sc. (Supervisor)

Cindy Lovanka

Jessica Sanusi

Vincent Alexis Sutjianto,Tjia

BACKGROUND

LAND & BUILDING REGULATIONS UNDER SOVIET SOCIALISM

Typical Master Plan of Soviet Housing Complex "Khrushchyovka" (Low-cost Apartment Building) - A Master Plan Located in Tallin, Estonia

Urban Regulations

Private property is eliminated. All land is in control of the central state.

Behavioral Premise

Everyone should be spending their time outside in communal environments (working, eating, socializing, etc.).

Hence, the barest minimum of indoor-living space; and the maximum of outdoor public space (but lacks of spatial qualities).

"Khrushchyovka"

Unofficial name for a type of low-cost apartment building which was developed in the Soviet Union during the early 1960s.

Initiated by Nikita Khrushchev, Chairman of the country's Council of Ministers from (1958-1964).

Khrushchev's mission: building many houses quickly.

BACKGROUND

BUILDING TYPOLOGY OF "KHRUSHCHYOVKA"

The Barest Minimum of Indoor-Living Space.

The Maximum of Outdoor Public Space (but Lacks of Spatial & Environmental Qualities).

Concrete Panel
"Khrushchyovka" as Low-cost
Apartment Building in Tomsk,
Russia

URBAN CONTEXT

"KHRUSHCHYOVKA" IN WARSAW: TWO PERIODS OF DEVELOPMENT

- "Khrushchyovka" Housing Complex in Nowa Praga District
- "Khrushchyovka" Housing Complex in Szmulowizna District
- Old Town of Warsaw
- Site Location

URBAN CONTEXT

"KHRUSHCHYOVKA" IN WARSAW: TWO PERIODS OF DEVELOPMENT

5- Storied Concrete Panel Khrushcheyovka Built Prior to 1964 in Nowa Praga District, Warsaw, Poland

Building Typology of "Khrushchyovka" in 1960-1964 (Nikita Khrushchev's Regime)

5-storied building.
Prefaricated concrete panel or brick materials.
Small area of living space.

11-Storied Concrete Panel "Khrushchyovka" Built After 1964 in Szmulowizna District, Warsaw, Poland

Building Typology of "Khrushchyovka" in 1964-1982 (Leonid Brezhnev's Regime)

> 5-storied building.

More considerations to the climate context.

Prefaricated concrete panel or brick materials.

Small area of living space.

SITE CONTEXT

"KHRUSHCHYOVKA" AROUND THE SITE AS THE ANTITHESIS OF OUR OPEN SPACE TYPOLOGY

SITE CONTEXT

GREEN & OPEN SPACES AROUND THE SITE AS OUR SITE POTENTIALS

SITE CONTEXT

HISTORIC LAYERS OF URBAN LANDSCAPE & URBAN FABRIC

Map from 1939 (with Overlayered Site)

Current Existing Map (2021)

Things to be Considered as Design Guidelines & Principles:

Change of Urban Fabric
Change of the Shapes of Urban Blocks
Change of Street Structures
Change of the Shape of the Site

TYPOLOGY DIFFERENCE

"Krushchyovka" courtyard typology

Challenges found in the affordable socialist housing:

- 1. Non-human friendly scale
- 2. Lost sense of locations
- 3. Lack of sound insulation
- 4. Low ceiling
- 5. No elevator
- 6. Little heat insulation

"The Overlay" courtyard typology

"The Overlay" sustainable design solutions:

- 1. Human-friendly scale
- 2. Sense of place, belongings, and locations
- 3. Good heat and sound insulations
- 4. Lift and safety
- 5. High ceilings

SITE ANALYSIS

SITE PLAN DEVELOPMENT

SITE PLAN

SUMMER & WINTER ACTIVITY ZONE

ZONING

residential

provide good housing integrated with public transportation, and designs that support residents to get a good quality of life.

public transportation

provides integrated accessibility to connect residents with the nearest station

revitalization residential

restoring and upgrading the existing residential building to improve the residents quality of life

revitalization

gives new function to the heritage building as a mixed use building while not changing the facade and characteristic of the heritage building itself

oark

providing outdoor communal area with a green area that plays as a connector and air purifier for people to have a better quality of life

theater / entertainment

provide entertainment facitilities that support living balance of play and work that enhance the fun in the area

cafe & restaurant

cafes and restaurants that gives opportunities for local vendors to sell, also enhancing communal area

urban farming

semi-indoor green area that also function as education, promoting urban farming and also gives better quality of living for the area

ACTIVITY PLAN

ACCESSIBILITY

Target:

- 1. Increase Visitor
- 2. Increase Spending / Revenue
- 3. Efficiency and Productivity
- 4. Transofrmation of Venue: Rejuvenation some existing, reassignment or redevelop
- 5. Clean, Comfortable, and Safe open space
- 6. Accessibility and Connectivity
- 7. Investigate key Players

Big Moves:

Transformation

1. Infill new program

Refocusing on New Vision

- 1. Rezone, Reassign existing cultural
- 2. Harmonize diverse cultural spots with the nature elements

Integrated Masterplan

1. Efficient, Coordinated, Functional framework to operate

Legible and Visitor Friendly

- 1. Clear direction, Comfortable, and Safe pedestrian
- 2. Seamless and Integrated Transportation

Diversity and Extend Target

- 1. Multigenerational Entertainment, International
- 2. Unique and Existing forms that extend interest and length of stay

Sustainable and Green

- Water and Energy Scheme
 Landscape improve microclimate

Space for Gathering

- 1. Human scale space that are condusive for events and human interaction
- 2. Embrace the Heritage

ACTIVE FRONTAGE & PEDESTRIAN FRIENDLY

BUILDING TYPOLOGY

drop-off entrance heritage building entrance

public park first floor deck

heritage building extention urban farming

DORMITORY - DESIGN PROCESS

1. Site & Building Volume

2. Grid Overlay (orientation and accessibility)

3. Mass Division (control daylight)

ARCHITECTURE STUDENT CONTEST

STUDIO UNIT

2 BEDROOM UNIT

RESIDENCE PROGRAM & FACILITY

HERITAGE BUILDING DESIGN PROCESS

 Reuse the Heritage Building (maintain old building or preserve)

2. Building Volume (transition of old and new)

3. Control Daylight and Connecting Program

HERITAGE REHABILITATION

HERITAGE INFLITRATION

HEATING AND COOLING STRATEGY

SOLAR PANEL & RAIN WATER RE-USE

RESIDENCE HEATING SYSTEM

- -Let the sun in or block it out depending on the climate change.
- -Insulation to reduce heat loss or summer heat gains.
- -Smart systems to improve and moisture the building changes.
- -The insulate and provide weather defense to control the distribution of daylight and to the aesthetics of the space.

RESIDENCE ACOUSTIC SYSTEM

- -Fire Resistant
- -Very Good thermal insulation.
- -Excellent acoustic properties in terms of noise absorption.
- -low vapour resistance, good water vapour penetrability.
- -Environmentally friendly and hygienic.

RESIDENCE VENTILATION SYSTEM

- -Control glazing limit energy gain while ensuring good natural lighting indoors.
- -Minimizing heat loss and maximizing natural light is a priority that goes hand-in-hand with controlling solar gain to limit excessive heat build-up inside premises.
- -Can Reflect up to 80% of the sun's energy, thereby reducing the need for air conditioning.

LIFE CYCLE ASSESSMENT

Poles eat more vegetables a day (477 g) than any other country in Europe.

FIRE SAFETY

EXTERIOR WALL DETAIL

SAINT-GOBAIN

FACADE DETAIL

GREEN ROOF DETAIL

CEILING ABOVE HEAT & UN-HEATED

PARTITION WALL DETAIL

SOLAR STUDY

1 Year Solar Study

building, not only for new buildings that

must be, in accordance with current

existing buildings.

legislation, NZEB (Nearly Zero-Energy

Building) but also for the rehabilitation of

in BIM 6D achieves an energy saving of 50% in general and up to 13% only by acting on lighting systems, allowing the decarbonization of buildings with high energy consumption.

Lighting Ix: 9/23 3

Also Achieve 300-500 lux for overal better Live, Health, Work, and Play in the student dorm.

UNIT SYSTEM ANALYSIS

CALCULATIONS

Specific Heat Demand		
Transmission Heat Losses:	987.58	kWh/a
Ventilation Heat Losses:	363.79	kWh/a
Total Heat Losses:	1351.37	kWh/a
Internal Heat Gains:	992.93	kWh/a
Solar Heat Gains:	301.35	kWh/a
Total Heat Gains:	1101.16	kWh/a
Annual Heat Demand:	250.21	kWh/a
Specific Heat Demand:	2.53	kWh/(m2a)
<u>'</u>		

CALCULATIONS

Overheating		
Exterior Thermal Transmittance:	12.98	W/K
Ground Thermal Transmittance:	2.16	W/K
Ventilation Transmittion Ambient:	59.00	W/K
Ventilation Transmission Ground:	19.41	W/K
Solar Aperture:	2.24	m2
Frequency of Overheating:	0.00	%

