

STUDENT

SAINT-GOBAIN

June 2022

UNIVERSIDAD BEROAMERICANA

CIUDAD DE MÉXICO

Zone A

Ground Floor

- Mechanical rooms/maintainance Circulation
- Reception/waiting rooms
- Food stalls/ Dining room
- Stairs
- Restrooms
- Reception area
- Storage rooms
- Exhibition spaces
- Workshops

Level 1

^{*} To keep the historic atmosphere of the structure, it was decided to avoid demolition of the interior walls of the factory.

Zone B1

Zone B2-B3

Double room (2 shipping containers)

* Heating system by floor through linear diffuser

Single room

- * Bed folds into wall to create more space (murphy bed)
- * Heating system by floor through linear diffuser

Exterior
32" Degrees Celcius

Lower Confort Zone Limit

*No air conditioning system supplied (natural ventilation strategy)

*Opening windows during the day allows air renewal, letting hot air out.

*Overhangs avoid direct radiation from the summer sun

Interior

(Hallway)

*Night ventilation to cool down structure

*Thermal insulation helps to keep low temperatures inside of the room

SUMMER (NIGHT)

SUMMER (DAY)

*The angle of the winter sun allows it to flood the room with solar radiation

*Low height between stories and compact rooms help to keep the space warm

*Insulation: Materials like double windows, walls, floors and roofs with low U-values keep the heat inside the room

Potential suppliers and container ports

Distance from Gdansk and Gdynia ports:

- -3:40 hr by lorry drive
- -4:00 hr by train with direct access to the project site

Recycling

Assembly benefits:

- Off site dorm manufacture
- Fast assembly by cranes
- Easy disassembly for reuse
- Lower carbon emissions during construction stage than conventional structures
- Possible future growth for students and/or immigrants if necessary

*The rooms will be one of the most used spaces, that is why we focused on increasing natural daylight autonomy %

^{*}Bathrooms, which are less used, will be illuminated with artificial lights with energy generated by photovoltaics

Analytical Properties

Heat Transfer Coefficent (U)= 0.8 W (m2•K)

Layer 1: Shipping container metal sheet **Analytical Properties** FACADE WALL Layer 2: (3x)Arena Absorción Glass Wool k=0.032 W/m*K Layer 1: Shipping container metal sheet NRC=0.752 Layer 2: Eco 032 Glass Wool k=0.032 W/m*K Layer 3:Acustik- Soundproof gypsum board k=0.25 W/m*K Heat Transfer Coefficent (U)= 0.1587 W (m2•K) Layer 3: Habito gypsum board k=0.25 W/m*K ROOF |Thickness= 28.2 cm Thermal Resistance (R)= 6.3016 (m2•K)/W Thickness= 17.7 cm **Analytical Properties** Heat Transfer Coefficent (U)= 0.1989 W (m2•K) Thermal Resistance (R)= 5.0273 (m2•K)/W Fire Safety: Non-combustible materials INTERIOR WALL INNER WALL Fire Safety: Non-combustible materials Layer 1: Shipping container metal sheet Layer 1: Habito gypsum board Layer 2: Layer 2: Eco 0.32 Glass Wool Layer 3: Placo RH- Moisture resistant gypsum board Layer 3:Placo RH- Moisture resistant gypsum board Thickness: 12,7mm **FLOOR** Container TRIPLE GLAZING WINDOW Layer 1: Flooring system-laminated wood Layer 2: Concrete leveling layer Glazing 1: PLANITHERM Lux 4mm Layer 3: PANEL SOLADO Isover k=0.036 Cavity 1: 14mm arg 90% W/m*K Glazing 2: Planiclear SAINT-GOBAIN Layer 4: Wood sheathing Cavity 2: 14mm arg 90% Layer 5: Shipping container metal sheet Glazing 3: PLANITHERM Lux 4mm

Analytical Properties

Heat Transfer Coefficent (U)= 0.30 W (m2•K)

Thermal Resistance (R)= 3.3 (m2•K)/W

Placo RH- Moisture resistant gypsum board with Eco 0.32 Glass Wool

Step by step measures for reducing energy consumption

Orientation (SE)- The secion of the student rooms building is mostly oriented to the south-east, giving it more natural light and solar radiation, avoiding artificial lights and heating systems

2 Window to wall ratio= 30% An appropriate window size for the rooms helps to reduce the energy loss from the inside, but also allows radiation to go inside the room

3 Choosing the right materials- Proper insulation for the walls, floors, and roofs help to avoid energy loss from transmition through the solid surfaces

4 **Air tightness-** We paid special attention in construction joints in order to accomplish air tightness. As leaky buildings tend to have higher heating loads

0.0001m³/s per m² facade

Air changes- We applied the minimum air changes per hour according to the ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) recomendations

0.35 ach

6 Implementation of heat exchanger- This allows to pre-heat fresh outdoor air before it enters the rooms, reducing the heating load

Conventional building

In-situ concrete module

Econtainer Student Living Recycled container module

VS

*200m2 analysis, 8 storey building

Embodied carbon benchmark

After running the analysis on OneClick with our materials, we compared our section of building which has a category C of carbon emissions with 499 CO2e/m2 vs a conventional building that has a category G and 820 CO2e/m2

-Our project has 75% less Global Warming Potential than a conventional building

CO2 Emissions in each life stage

^{*}Because we have a recycled container, the material stage has dramatical lower CO2 emissions, as well as the end of life stage

CO2 emissions- elements

