Saint-Gobain Student Contest 2022

Life Cycle Assessment lecture – Session 1

Marios Tsikos, One Click LCA

6th December 2021

How to make this training more productive

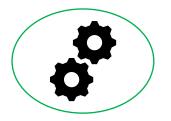
We share directly these slides to have as reference.

Ask your questions at the chat during the lecture.

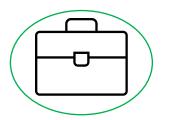
If you get cut off, the training is also **recorded** so just re-join when you can.

Student contest introduction (5 minutes)

- Introduction to One Click LCA (5 min)
- Life Cycle Assessment, what and why? (30 minutes)
- Theory & Standards (10 minutes)
- Environmental Product Declarations (5 minutes)
- Steering emissions in construction projects (10 minutes)
- Demo (35 minutes)
 - General Interface
 - Manual modelling
 - Optioneering
 - Results
- Access to the software and support (10 minutes)
- Q&A and discussion (10 minutes)



ABOUT US



One Click LCA – World-leading carbon and life cycle metrics software

Professional services and Training – EPD verification/publishing, Sustainable policy, life-cycle assessment, life-cycle costing, CSR

Custom Solutions – Branded and white labelled solutions for lifecycle efficiency, best practice tracking, scoring, data collections, environmental impacts assessment, and more

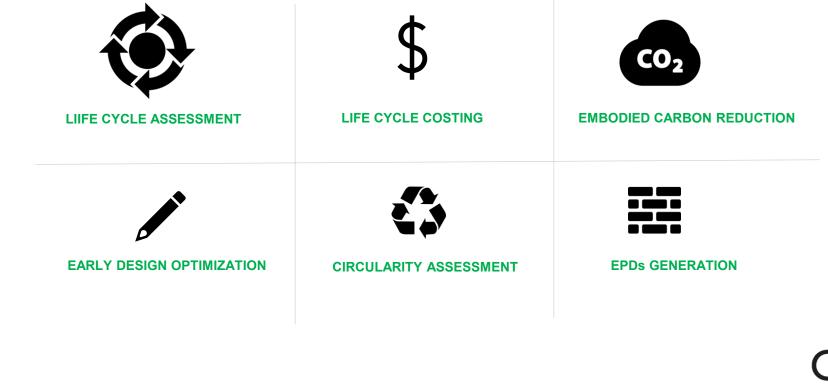
High Impact Research on Decarbonisation – The Embodied Carbon Review of 100+ regulations and global rating systems

World-leading Carbon & Life-cycle Metrics Software.

MADE FOR CONSTRUCTION

Buildings and Renovation, Infrastructure, Product EPDs, CSR

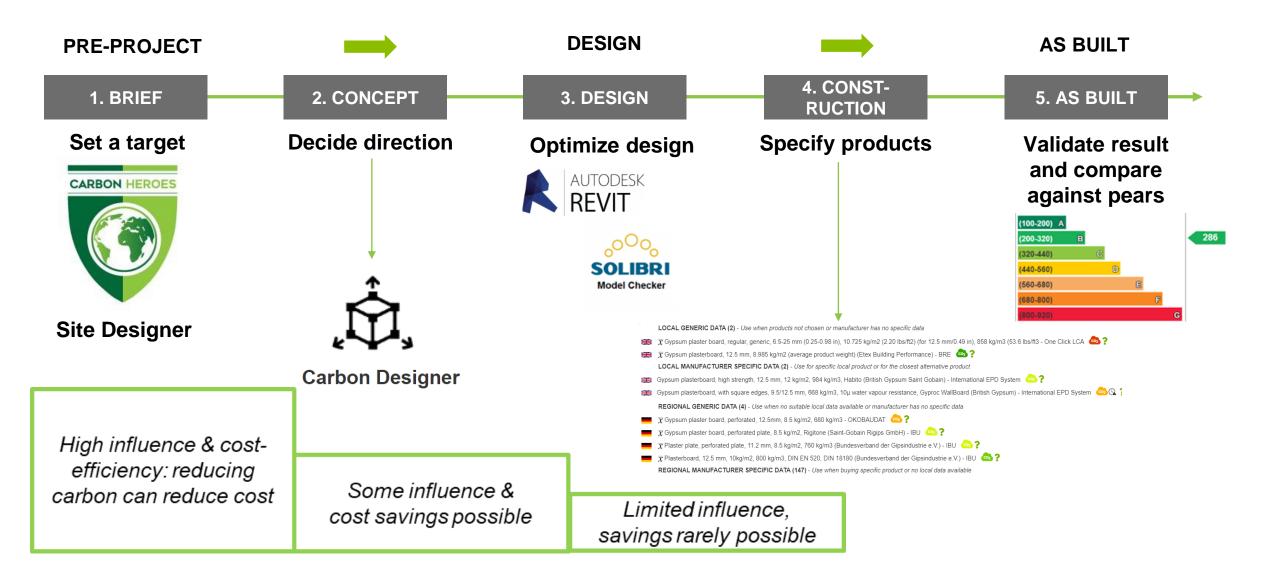
COMPLIES WITH 40+ CERTIFICATIONS


BREEAM, LEED, DGNB, HQE/ E+C-, CEEQUAL,

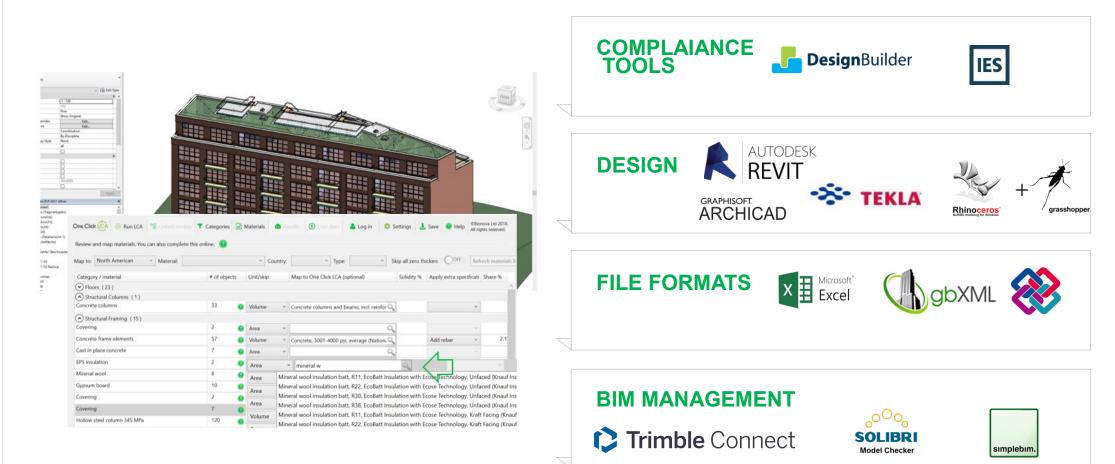
etc.

INTEGRATE WITH YOUR DESIGN TOOLS & 40+ DATABASE Revit, BIM, IFC file. IESVE, other tools.

Easy to use tools for construction sustainability metrics and impact reduction

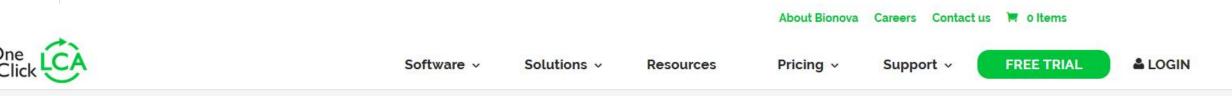


OUR CUSTOMERS


Developed in Finland, trusted by industry experts Leading Builders in 130+ countries Leading Investors h+k BOUYGUES SKANSKA ARCADIS STATSBYGG VASAKRONAN **STRABAG** SWECO 🛣 Sir Robert 111 NCC Liik enne vira sto hS ARUP RAMBOLL GROSVENOR FX ¥ ¥ Foster + Partners **European Bank** for Reconstruction and Development Helsinki IKEA Dublin City Leading Designers Ympäristöministeriö cen NAPE Miljöministeriet Ministry of the Environment SAINT-GOBAIN LafargeHolcim Institutions & Governments **Kingspan** Leading Manufacturers CEME>

One Click LCA helps to improve your project in every stage

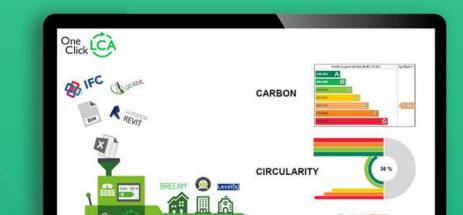
Automation from Design Tools



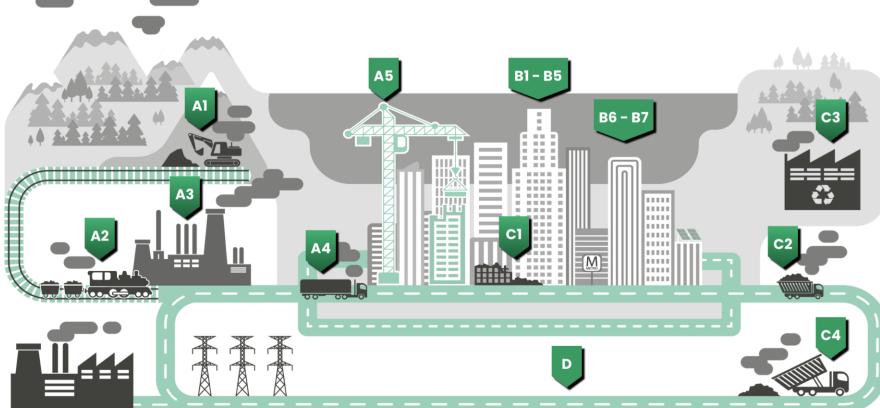
We integrate all qualifying EPDs in the world

All systems at: https://www.oneclicklca.com/support/faq-and-guidance/documentation/compliancy-and-certifications/

Life Cycle Assessment & Embodied Carbon - What do they mean and Why they matter?


Embodied Carbon & Circular Economy Road Tour, World Green Building Week, 23-29 Sept. Join us online or in 6 countries!

Calculate Your Environmental Impacts in Minutes



- Reduce Cost, Carbon, and Material Use in Construction.
- For LEED, BREEAM and more.
- റ്റ് Integrated with Revit, BIM, IESVE and other tools.

GET A FREE DEMO

A1 - A3 Product stage

- Al Raw material extraction
- A2 Transport to manufacturing site
- A3 Manufacturing

A4 - A5 Construction stage

- A4 Transport to construction site
- **A5** Installation / Assembly
- B1 B5 Use stage
 - **B1** Use
 - **B2** Maintenance Repair **B3**
 - **B4** Replacement
- Refurbishment **B5**
- Operational energy use **B6**
- **B7** Operational water use

- C1 C4 End of life stage
- **C1** Deconstruction & demolition
- C2 Transport
- C3 Waste processing
- C4 Disposal

D - Benefits and loads beyond system boundary

Reuse, recovery and/or recycling potentials, expressed as net impacts and benefits

					PROJEC	CT LIFE CYC	CLE INFORM	NATION						SUPPLEMENTARY INFORMATION BEYOND PROJECT LIFE CYCL
	[A1 – A3]		[A4	– A5]			[B1 – B7]				[C1	– C4]		[D]
	PRODUCT stage		CONSTR PRO sta		USE stage							OF LIFE age	Benefits and loads beyond system boundary	
[A1]	[A2]	[A3]	[A4]	[A5]	[B1]	[B2]	[B3]	[B4]	[B5]	[C1]	[C2]	[C3]	[C4]	
Raw material extraction & supply	Transport to manufacturing plant	Manufacturing & fabrication	Transport to project site	Construction & installation process	nse		erational energy		Refurbishment	Deconstruction Demolition	Transport to disposal facility	Waste processing for reuse, recovery or recycling	Disposal	Reuse Recovery Recycling potential

					PROJEC	CT LIFE CYC	LE INFORM	MATION						SUPPLEMENTARY INFORMATION BEYOND PROJECT LIFE CYCL
	[A1 – A3]		[A4	– A 5]			[B1 – B7]				[C1	– C4]		[D]
	PRODUCT stage		CONSTF PRO sta	CESS	USE stage						END C sta	IF LIFE Ige	Benefits and loads beyon system boundary	
[A1]	[A2]	[A3]	[A4]	[A5]	[B1]	[B2]	[B3]	[B4]	[B5]	[C1]	[C2]	[C3]	[C4]	
Raw material extraction & supply	Transport to manufacturing plant	Manufacturing & fabrication	Transport to project site	Construction & installation process	Use		erational en		Refurbishment	Deconstruction Demolition	Transport to disposal facility	Waste processing for reuse, recovery or recycling	Disposal	Reuse Recovery Recycling potential

What most regulations focus on at the moment

					PROJEC	CT LIFE CYC	CLE INFORM	MATION						SUPPLEMENTARY INFORMATION BEYOND THE PROJECT LIFE CYCLE
	[A1 – A3]		[A4	– A5]			[B1 – B7]				[C1	– C4]		[D]
	PRODUCT stage		CONSTR PROC sta	CESS			USE stage					PF LIFE age		Benefits and loads beyond the system boundary
[A1]	[A2]	[A3]	[A4]	[A5]	[B1]	[B2]	[B3]	[B4]	[B5]	[C1]	[C2]	[C3]	[C4]	
Raw material extraction & supply	Transport to manufacturing plant	Manufacturing & fabrication	Transport to project site	Construction & installation process	Use		erational en		Refurbishment	Deconstruction Demolition	Transport to disposal facility	Waste processing for reuse, recovery or recycling	Disposal	Reuse Recovery Recycling potential

Cradle to gate

					PROJEC	CT LIFE CYC	CLE INFORM	MATION						INFORMAT	PLEMENTARY TION BEYOND THE CT LIFE CYCLE
	[A1 – A3]		[A4 ·	– A5]			[B1 – B7]				[C1	– C4]			[D]
	PRODUCT stage		PROC	RUCTION CESS Ige			USE stage					OF LIFE age			d loads beyond the em boundary
[A1]	[A2]	[A3]	[A4]	[A5]	[B1]	[B2]	[B3]	[B4]	[B5]	[C1]	[C2]	[C3]	[C4]		
Raw material extraction & supply	Transport to manufacturing plant	Manufacturing & fabrication	Transport to project site	Construction & installation process	Use		erational en		Refurbishment	Deconstruction Demolition	Transport to disposal facility	Waste processing for reuse, recovery or recycling	Disposal	F	Reuse Recovery Recycling potential

Cradle to practical completion

					PROJEC	CT LIFE CYC	LE INFORM	MATION						SUPPLEMENTARY INFORMATION BEYOND T PROJECT LIFE CYCLE
	[A1 – A3]		[A4 ·	– A5]			[B1 – B7]				[C1	– C4]		[D]
	PRODUCT stage		CONSTR PROC sta	CESS	USE stage						END C sta	IF LIFE Ige		Benefits and loads beyond t system boundary
[A1]	[A2]	[A3]	[A4]	[A5]	[B1]	[B2]	[B3]	[B4]	[B5]	[C1]	[C2]	[C3]	[C4]	
Raw material extraction & supply	Transport to manufacturing plant	Manufacturing & fabrication	Transport to project site	Construction & installation process	Use		erational ene		Refurbishment	Deconstruction Demolition	Transport to disposal facility	Waste processing for reuse, recovery or recycling	Disposal	Reuse Recovery Recycling potential

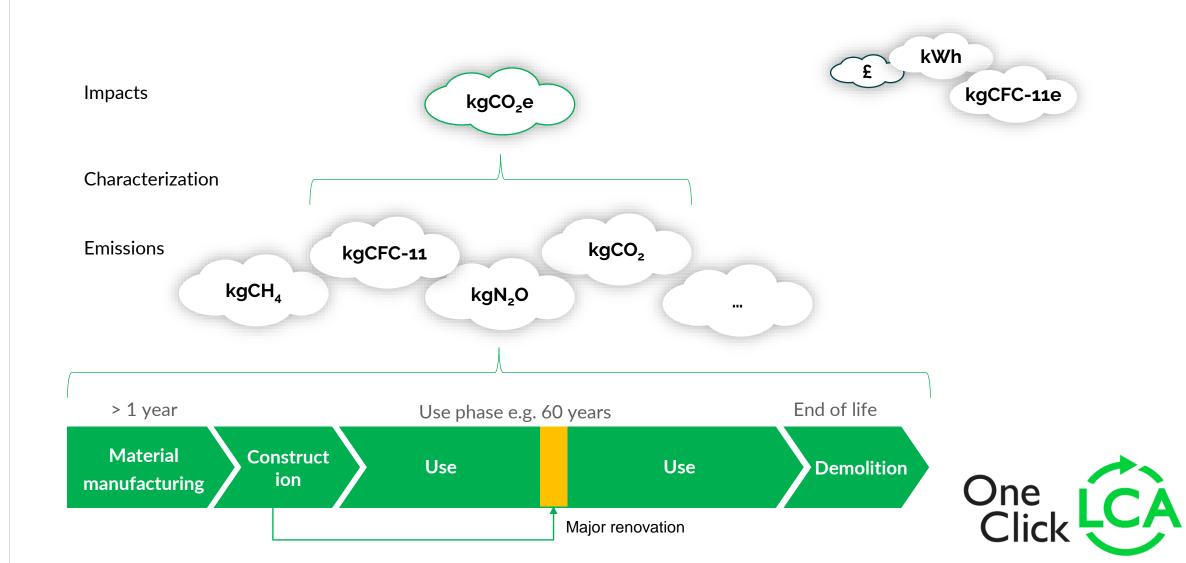
Cradle to Grave

					PROJEC	CT LIFE CYC	CLE INFORM	NATION						INFOR	SUPPLEMENTARY RMATION BEYOND THE ROJECT LIFE CYCLE
	[A1 – A3]		[A4	– A5]			[B1 – B7]				[C1	– C4]			[D]
	PRODUCT stage		PRO	RUCTION CESS age			USE stage				END C sta	IF LIFE Ige			its and loads beyond the system boundary
[A1]	[A2]	[A3]	[A4]	[A5]	[B1]	[B2]	[B3]	[B4]	[B5]	[C1]	[C2]	[C3]	[C4]		
Raw material extraction & supply	Transport to manufacturing plant	Manufacturing & fabrication	Transport to project site	Construction & installation process	nse di la companya di		erational end		Refurbishment	Demoitruction Demoitrion	Transport to disposal facility	Waste processing for reuse, recovery or recycling	Disposal		Reuse Recovery Recycling potential

Cradle to Cradle

					PROJEC	CT LIFE CYC	CLE INFORM	NATION						INFORMATION	MENTARY N BEYOND THE LIFE CYCLE
	[A1 – A3]		[A4	– A5]			[B1 – B7]				[C1	– C4]		[D]
	PRODUCT stage		PRO	IUCTION CESS Ige			USE stage					PF LIFE age			ads beyond the boundary
[A1]	[A2]	[A3]	[A4]	[A5]	[B1]	[B2]	[B3]	[B4]	[B5]	[C1]	[C2]	[C3]	[C4]		
Raw material extraction & supply	Transport to manufacturing plant	Manufacturing & fabrication	Transport to project site	Construction & installation process	Use		erational en		Refurbishment	Deconstruction Demolition	Transport to disposal facility	Waste processing for reuse, recovery or recycling	Disposal	Rec Recy	use overy ycling ential

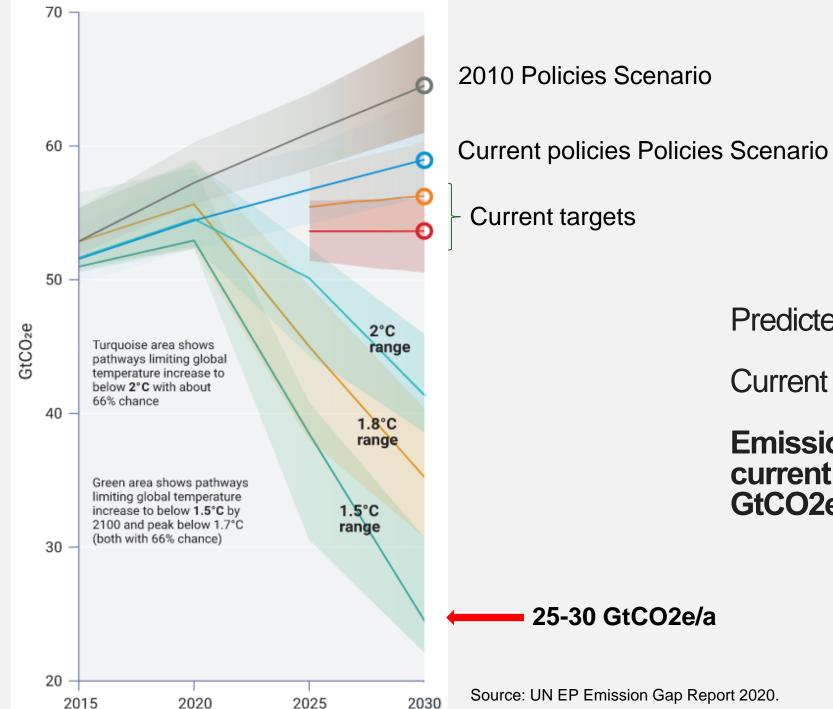
Embodied Carbon Assessment


LCA outputs are environmental indicators

Each indicator describes a particular category of environmental impacts. The

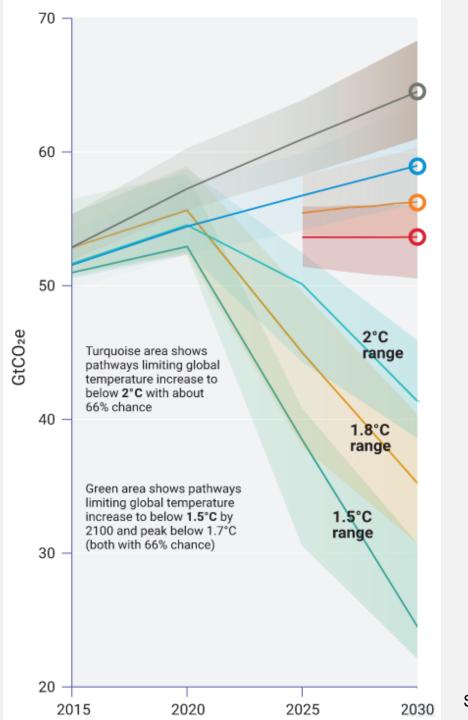
impacts are expressed as quantities of a matter that has the potential to cause such impacts – but they do not represent the actual harm (final impact, e.g. endpoint) eventually caused. For instance, global warming potential represents the amount of CO2e gases released. But the final impact is the acceleration to the polar melt, for instance.

- Global Warming Potential describes how much a product contributes to climate change. When LCA concerns only this impact category, it's called the carbon footprint.
- Acidification describes how much product acidifies the environment, resulting e.g. acid rain.
- Eutrophication describes flow of nutrients to ecosystems, resulting e.g. to algae growth.
- Ozone Depletion describes damage caused to the Ozone Layer in the stratosphere.
- Tropospheric Ozone describes the quantity of summer smog causing gases emitted.
- Depletion of fossil resources describes how much fossil resources are withdrawn.


Characterization

LCA characterization methods

Impact assessment methodology defines the target units and emission characterization factors. European standards require using CML (Charactaration Factor). North American data is normally in TRACI method.


LCA impact indicator units	CML 2002	TRACI 2.1	ReCiPe
Global warming potential	CO ₂ e	CO ₂ e	CO ₂ e
Ozone depletion potential	CFC-11-eq	CFC-11-eq	CFC-11-eq
Acidification potential (land)	SO ₂ e	SO ₂ e	SO ₂ e
Eutrophication potential (fresh water)	PO ₄ ³ e	N eq	Peq
Formation of tropospheric ozone(photochemical oxidant formation)	C ₂ H ₄ e	NO _x eq	kg NMVOC
Depletion of non-renewable energy resources	MJ	MJ	Kg oil eq

Predicted global GHGs

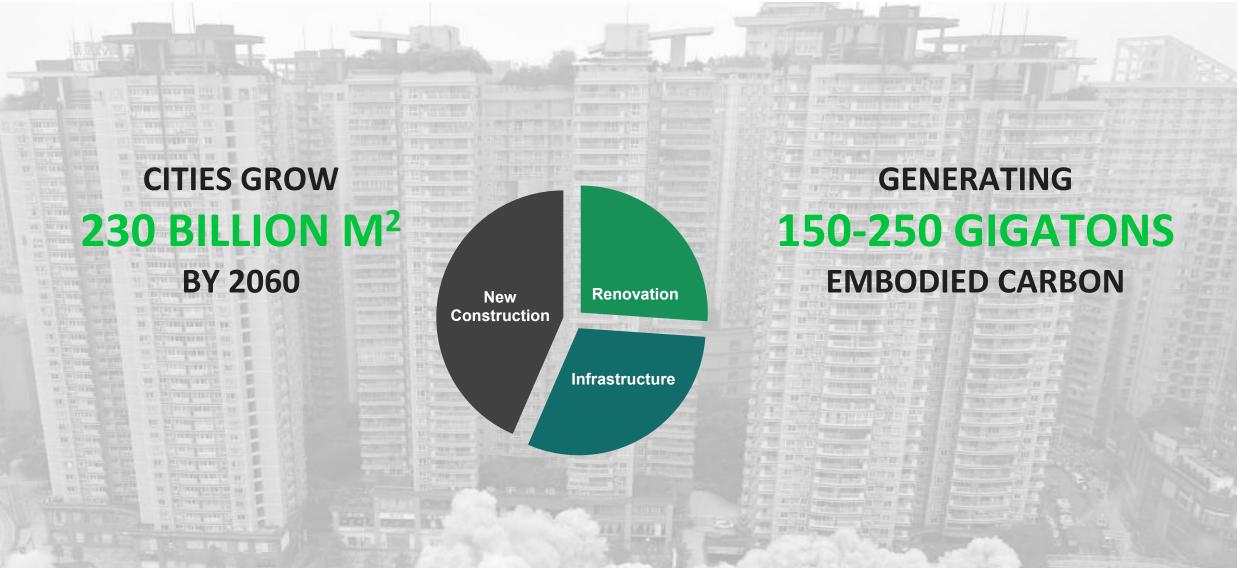
Current level 53 GtCO2e /a

Emissions on 2030 with current actions 55 – 60 GtCO2e/a

Restricting clobal warming to 1,5 degrees requires approx. **35 GtCO2e of** additional emission reduction measures

Buildings are responsible for 39% of global carbon emissions:

28% from operational emissions



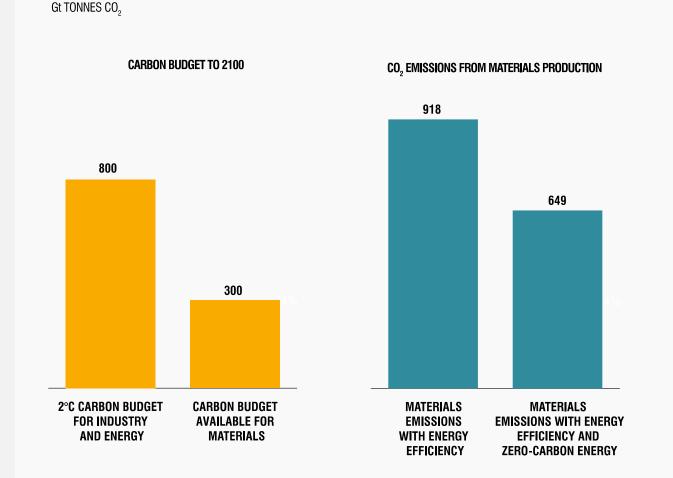
11% from materials and construction

SOURCE: BRINGING EMBODIED CARBON UPFRONT

Cities will double by 2060, creating 150-250 gigatons of embodied carbon from construction materials

One Click

This is equivalent to 3-5 years of global carbon emissions, or...


Πī

BUILDING A NEW YORK CITY EVERY 34 DAYS UNTIL 2060

Emissions from material manufacturers alone risk exceeding the 2-degree emission scenario

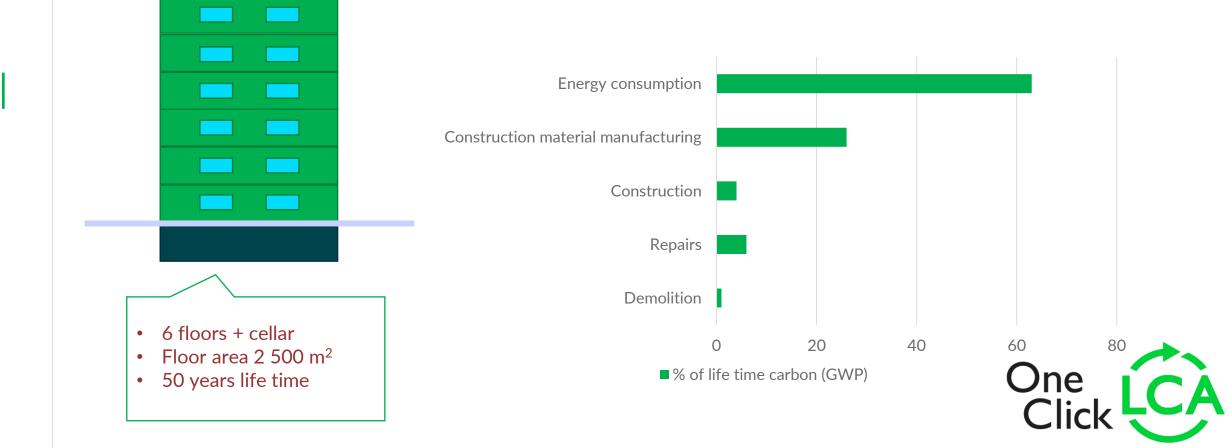
Aim, 2 degrees

Full carbon budget for industry and power generation & budget for 4 main materials (Steel, plastics, concrete, aluminium)

Current state

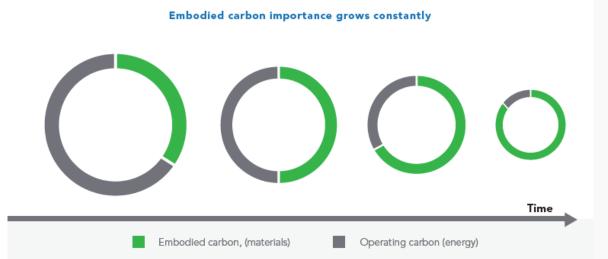
Emissions of materials with reduction of energy emissions

SOURCE: MATERIAL ECONOMICS MODELLING AS DESCRIBED IN TEXT. MULTIPLE SOURCES, SEE ENDNOTES.

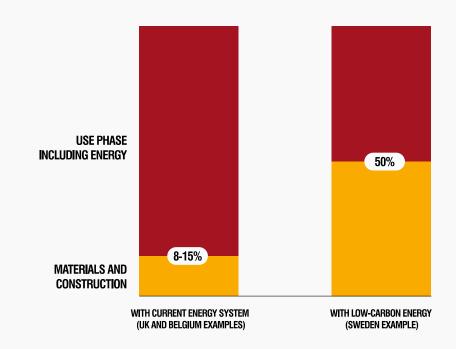

Source: The Circular Economy a Powerful Force for Climate Mitigation (SITRA, 2018)

CO, EMISSIONS AND CARBON BUDGET

Where do the climate impacts come from?


Life cycle carbon of average apartment building

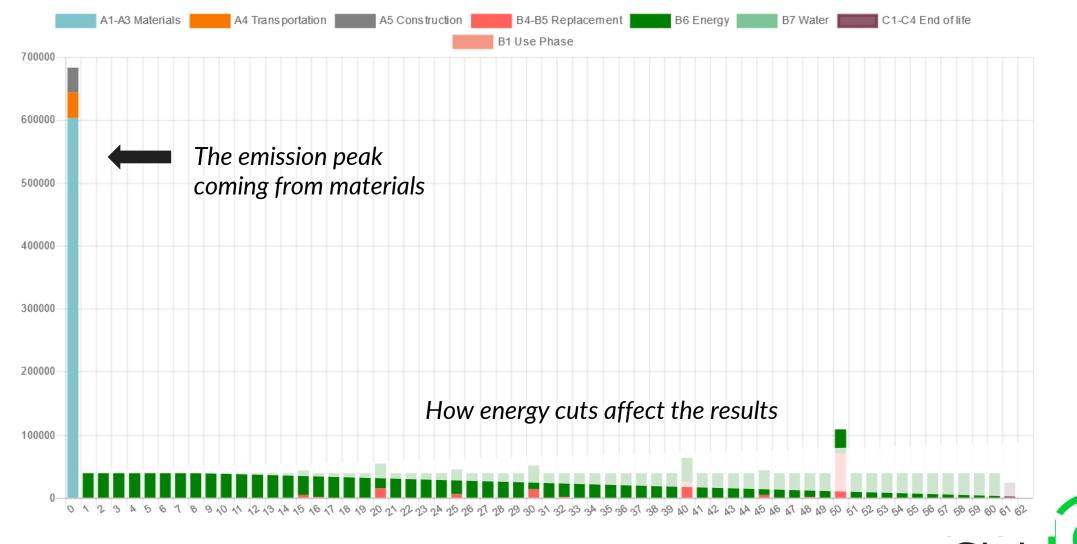
Laskelmat: Ruuska & Häkkinen: "The significance of various factors for GHG emissions of buildings." International Journal of Sustainable Engineering, 2014



How emissions are created during building life cycle?

- Energy efficiency and cleaner production reduce the emissions from operational energy
- Material emissions already exceed emissions of operating energy within a 50-year time frame, for some countries


LIFECYCLE CO2 EMISSIONS FROM BUILDINGS % OF CO2 EMISSIONS DURING LIFETIME


Source: Embodied carbon review – Embodied carbon reduction in 100 + regulatory and rating systems globally www.embodiedcarbonreview.com

Emissions over time

Helene, Level(s) pilot

Emissions over time

Helene, Level(s) pilot

Life Cycle perspective helps to avoid sub-optimization

Sources: Case study: Carbon footprint (kgCO2e / m2) of three ARA apartment blocks over a 50 year life cycle © Bionova Ltd

Growing demand for low carbon construction

London

The City of London must play its part in reducing carbon emissions. This will help meet the Paris Agreement target of keeping a global temperature rise this century below 2 degrees Celsius.

Melbourne The City of Melbourne became a certified carbon neutral organisation for the first time in 2011-12.

STATSBYGG

Stasbygg will work for a climateneutral property portfolio, deliver zero-emission buildings and contribute to reduced climate footprint for the state. (2016-20)

SKANSKA

NYC is committed to reducing its greenhouse gas emissions 80% by midcentury and is investing \$20 billion to adapt our neighborhoods to climate change risks such as flooding, heat, and sea level rise.

The City of Oslo strives to be a leading

and more inclusive society.

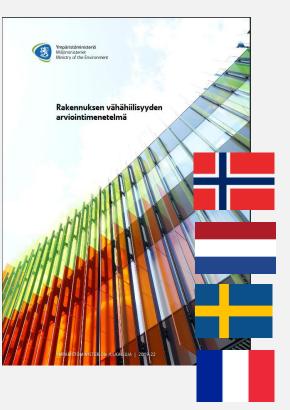
agent in the transformation to a greener

Oslo

YIT

Cut emissions of own projects to half and enable carbon neutral use by 2030

CUT CARBON EMISSIONS ACROSS OUR VALUE CHAIN BY 50 % BY 2030


Group target of achieving

net-zero carbon emissions

by 2045, with a 50 percent

reduction by 2030.

Cities Target: Carbon Neutrality How: City planning / procurement

Investors, construction companies

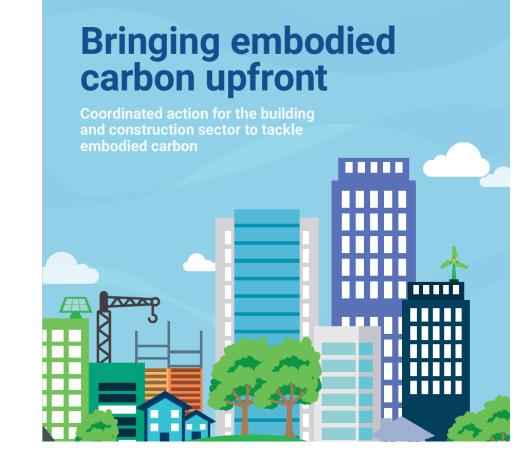
Target: Competitiveness, property value **How:** Low carbon design, certificates

Regulation Target: State carbon neutrality Keinot: Legislation

Increasing demand for carbon neutral building

GLOBAL CITIES ACHIEVING CARBON NEUTRALITY BEFORE 2050

OSLO | The City of Oslo strives to be a leading agent in the transformation to a greener and more inclusive society.


STOCKHOLM | The vision of a climate-smart Stockholm forms the basis of a strategy for a fossil-fuel free Stockholm by 2040.

World GBC: We need to be cutting embodied carbon now

All construction to be operationally carbon neutral and create at least 40 % less embodied carbon by 2030

Embodied carbon = CO₂e from manufacturing, transporting, replacing and disposing of materials

Source: https://www.worldgbc.org/embodied-carbon1/2

Summary of Industry trends

Certifications Like BREEAM and LEED incrising credits and weighting in material sections

Investestors and developers growing geen agenda and Zero carbon commitments

amazon

European commission has released their Level(s) framework for sustainable construction.

Amount of manufacturer EPDs in Europe and also globally increase rapidly. France has regulated EPD's.

Many countries and cities are moving towards building LCA regulation and requirements to achieve their carbon targets.

Over 100 certification schemes and regulations drive the life cycle impacts and the carbon footprint of construction materials

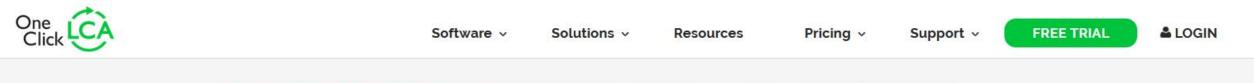
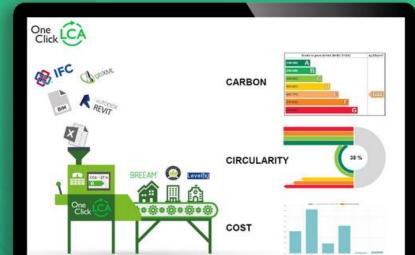


Illustration: types of systems addressing embodied carbon by region globally

Embodied carbon review – Embodied carbon reduction in 100 + regulatory and rating systems a globally www.embodiedcarbonreview.com

BRFFAM


Theory & Standards

Embodied Carbon & Circular Economy Road Tour, World Green Building Week, 23-29 Sept. Join us online or in 6 countries!

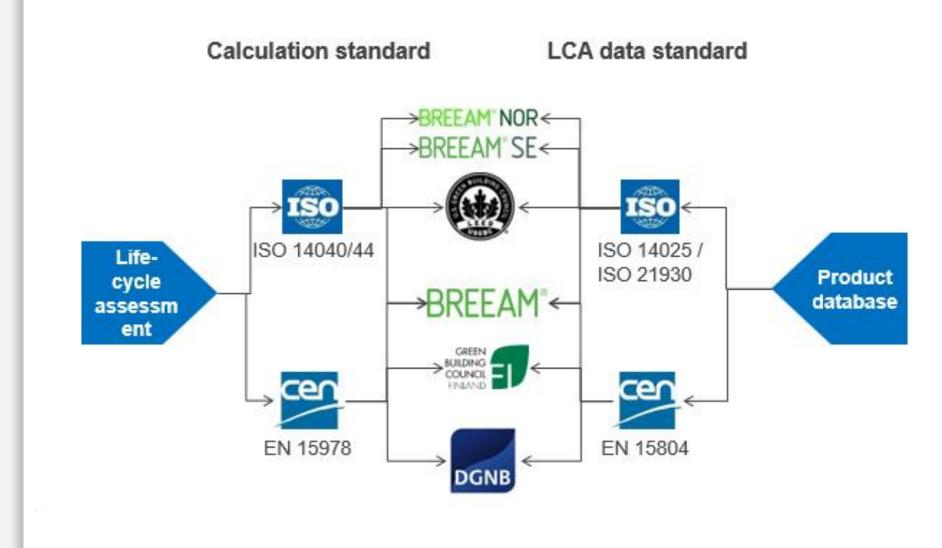
Calculate Your Environmental Impacts in Minutes

LCA follows standards

Cornerstone standards

ISO 14040 and ISO 14044 – fundamentals for LCA; used in all industries and in professional context, almost all the time

Construction works specific standards


EN 15978 – LCA standard for construction projects ISO 21929-1 and ISO 21931-1 - hardly used LCA standards in Europe

Environmental Product Declaration standards

ISO 14025 – cornerstone standard for all kinds of EDPs EN 15804 (EPD data) and EN 15942 (EPD format) ISO 21930 – hardly used EPD standard in Europe

LCA standards & certifications

All rating systems and methods approve either ISO- or EN-based LCA; or both.

EN 15978 key requirements

Required Service Life is set based on property owner's requirement

• materials must be replaced if they fail to perform for that lifetime

Functional requirements must be clearly documented

comparison is only possible for comparable performance

Construction products are only comparable at the building level

- No comparison without taking into account the building context
- For example one product might require more maintenance or replacements over life-cycle, or require additional other materials

No forecasting

- You are not allowed to take into account any potential improvements that might happen in the future
- You are not allowed to calculate LCA with the use of market-based green electricity; that's impossible to guarantee

Generic LCA principles

Life-cycle assessment may be done with several different scopes:

- cradle to gate (product before use),
- cradle to grave (product, including use and final disposal) basis,
 Note! for construction projects, the natural scope is always cradle to grave.

The construction LCA standards use attributional approach.

Attributional LCA assigns responsibility using allocation methodology and avoids the use of system expansion.

Conduct an LCA following agreed EN & ISO standards or National methodology like RICS

An LCA may be used to identify performance gaps, compare products, make procurement decisions or improve designs, amongst others.

MR Credit - Whole Building Life Cycle Assessment

Intent

To encourage adaptive reuse and optimise the environmental performance of products and materials

One Click

Criteria

In LEED, the life cycle assessment is done for six different environmental impact categories. The impacts are expressed as quantities of a matter that has the potential to cause such impacts, but they do not represent the actual harm eventually caused.

LCA impact categories for LEED LCA and their descriptions:

- Global Warming Potential describes how much a product contributes to climate change. When an LCA considers only this impact category, it's called the carbon footprint.
- Ozone Depletion describes the damage caused to the Ozone Layer in the stratosphere.
- Acidification describes how much product acidifies the environment, resulting in acid rain.
- Eutrophication describes the flow of nutrients to ecosystems, resulting in algae growth.
- Tropospheric Ozone describes the quantity of summer smog-causing gases emitted.
- Depletion of non-renewable energy resources describes how many fossil resources are withdrawn.

LCA scope & period of analysis

Use, repair and replace 60 years

Demolition

Life-cycle stages included in the LCA for LEED v4 & v4.1

Does not include the operational energy or water use

LEED v4.1 LCA points allocation

Different Paths lead to different points

Paths	Requirements for the path in LEED v4.1	Points
Path 1	Conduct a life cycle assessment of the project's structure and enclosure	1 point
Path 2	Conduct an LCA for structure and enclosure that demonstrates a minimum of 5% reduction in global warming potential and two other impact categories 2 points	2 points
Path 3	Conduct an LCA for structure and enclosure that demonstrates a minimum of 10% reduction in global warming potential and two other impact categories 3 points	3 points
Path 4	Incorporate building reuse and/or salvage materials into the project's structure and enclosure for the proposed design. Demonstrate reductions compared with a baseline building of at least 20% for global warming potential and at least a 10% reduction in two other impact categories	4 points

https://www.oneclicklca.com/leed-v4-1-lca/

LCA scope & building elements

Include

Structural elements

Foundations, frame, walls, roof system

Building envelopeCladding, water-proofing

Exclude

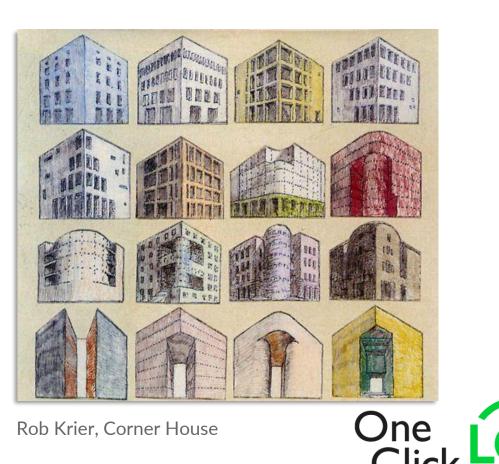
Building technologies

- MEP & systems
- elevators and conveying systems

Finishes

Excavation / site development

Baseline Building:


Prerequisites & Strategies

LCA baseline requirements

The proposed design and baseline building <u>must</u> have the same :

- 1. Size, gross floor area
- 2. Programmatic function
- 3. Orientation
- 4. Location
- 5. Energy performance

HOW to develop your baseline

Option 1 - Develop your baseline based on energy model

- Proposed model compliant with ASHRAE 90.1 appendix G (LEEDv4: 2010 / LEEDv4.1: 2016)
- Quantity takeoff from energy models

Option 2 – Use proposed building analysis

- One of the most common and efficient strategies
- Calculate the LCA of the proposed building design
- Alternative material / structural options
- Baseline can then be one of the created alternatives
- Quantity take off from BIM models

HOW to develop your baseline

Option 3 - using early stage or alternative design model as a baseline:

- If you have information or design options in the early design phase
- Calculate an LCA and set it as baseline
- PRO: Able to suggest significant changes

Option 4 - use a benchmark or archetype building (Carbon Designer)

- Use typical local structures for the baseline.
- Ideally use the geometry of the existing project to ensure the equivalence
- Very convenient if you are planning to change the whole structural system
- PRO: New tool for generating easily the baseline

Carbon Designer for Reference Buildings & carbon management in concept phase

Project materials scope

Building parameters

Ground Slab Structure _ _ .

Foundations and substructure

Building dimensions

Building structures

Edit areas if necessary.							
Foundations and s	ubstructu	re					
Foundation 😨	5000	m²					
Frost Insulation 2	158	m					
Ground Slab							
Ground slabs	1000	m²					
Structure							
Floor slabs	4000	m²					
Columns 2	432	m					
Beams 😢	720	m					
Balconies	50	m²					
Staircases 3	18	m					
Enclosure							
Underground walls	0	m²					
External walls	2108	m²					
Cladding	2108	m²					
Windows	1000	m²					
External doors	20 🏸	m²					
Roof slab	1000	m²					
Roofs 😢	1000	m²					
Finishes							
		m²					
Internal walls 😧	5318						

Developed for the purpose of creating reference buildings on assignment from:

Enclosure	
 Finishes 	
Services (beta)	Height
	-
Building type, size and number of floors	Width
European reference building v2019.1	Depth
Building type	Interna
Office buildings •	Colum
Gross floor area (GFA) 5000 \nearrow m ²	simula
Number of above ground floors 5	Numb
+ More options	Total r
Energy Section	Shape
Scenario	Gross
Not applied	
Life-Cycle Cost	
Choose Life-Cycle Cost tool	
Not applied	

	Т

18

61

18

33

1.1

<u>></u> m

m

m

m

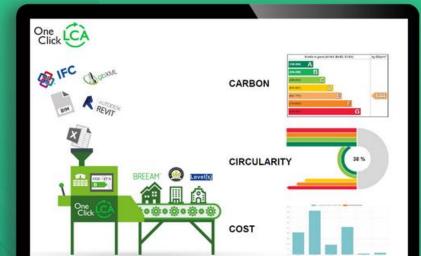
m

Width Depth Internal floor height Column spacing distance simulationTool.loadBearingShare 0


Number of staircases Total number of floors Shape Efficiency Factor 🕑

Gross internal floor area (GIFA) 4723 泽 m²

Cancel


culate areas	Create Baseline

Environmental Product Declarations (EPDs)

Calculate Your Environmental Impacts in Minutes

An EPD is an LCA for a product with additional rules for calculation, verification and publication

ENVIRONMENTAL PRODUCT DECLARATION

Insulated Metal Panels Industry-Wide EPD

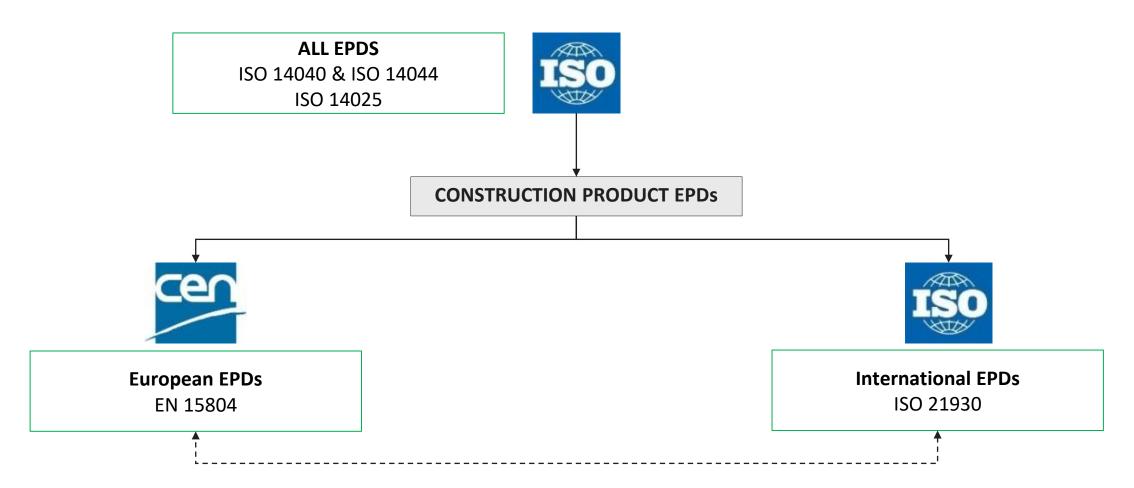
This declaration is an environmental product declaration in accorda does not guarantee that any performance benchmarks, including e benchmarks, are met. EPDs are intended to compliment Type I en EPDs provide LCA-based information and additional information or products and assist purchasers and users to make informed comp not comparative assertions. EPDs encourage improvement of envi information for assessing the environmental impacts of products of on an LCA covering all life cycle stages, or based on a different PC that have limited comparability. EPDs from different programs may

PROGRAM OPERATOR	UL Environment
DECLARATION HOLDER	Metal Construction Association (I
DECLARATION NUMBER	13CA27321.101.1
DECLARED PRODUCT	Insulated Metal Panels
REFERENCE PCR	Insulated Metal Panels & Metal C Panels (UL, October 2012)
DATE OF ISSUE	27 August 2013
PERIOD OF VALIDITY	5 Years
CONTENTS OF THE DECLARATION	Product definition and information Information about basic material Description of the product's man Indication of product processing Information about the in-use con Life cycle assessment results Testing results and verifications

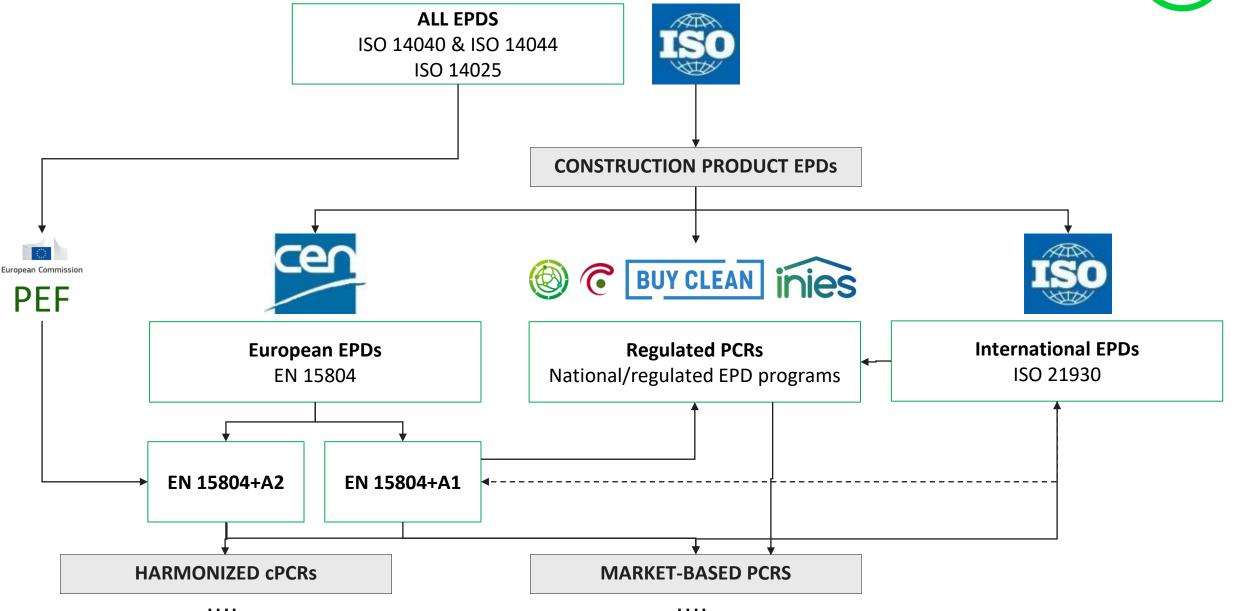
The PCR	review	was	conducted	by:
---------	--------	-----	-----------	-----

This declaration was independently v 14025 by Underwriters Laboratories	erified in accordance wi
INTERNAL	EXTERNAL

Rakennustietosäätio **RTS Building** Information


EPD in a Nutshell

- Based on real data, no forecasting
- Can represent either one product and one factory or many products and many factories
- Often valid for 5 years
- Several kinds of EPDs, that represent different scopes
 - Cradle-to-gate
 - $\circ \quad \text{Cradle-to-grave}$
 - Cradle-to-gate with options
- Offer knowledge on the product's environmental performance. Only similar products that are calculated with same methods can be compared.


The family of EPD standards...

... is growing fast!

Example EPD

FINNFORM.

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

TULPPA - WET ROOM BOARDS

FINNFOAM OY

PRODUCT DESCRIPTION

Finnfoam Oy's Tulppa is a Finnish-made wet room panel, which functions as both a construction board and waterproofing material. The core of the panel is made from a closed-cell, waterproof and mold-proof Finnfoam (XPS) insulation material and the surface layer consists of strong, special-purpose cement mortar. The Tulppa panel can be used as a base for tiling.

PRODUCT APPLICATION

Tulppa is a horizontally installed wet room panel, which functions as both a construction board and waterproofing material.

DECLARED AND FUNCTIONAL UNIT

Declared unit	1 m²	
Mass per declared unit	3.80 kg 4.15 kg 4.85 kg	(with 12.5 mm XPS) (with 20 mm XPS) (with 30 mm XPS) (with 50 mm XPS) (with 80 mm XPS)

TULPPA WITH 12.5 MM XPS

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

The required characterisation method and data are in kg P-eq; to get PO₄e, multiply the result by 3.07.

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Climate change – total	kg CO2e	2.29E+00	5.07E-01	-1.18E-01	2.68E+00	6.98E-02	5.68E-01	MND	0.00E+00	2.25E-02	2.46E+00	0.00E+00	-9.05E-01
Climate change – fossil	kg CO2e	2.27E+00	5.07E-01	4.06E-01	3.19E+00	7.04E-02	3.02E-02	MND	0.00E+00	2.25E-02	8.26E-01	0.00E+00	-9.05E-01
Climate change – biogenic	kg CO ₂ e	1.80E-02	2.70E-04	-5.31E-01	-5.13E-01	5.11E-05	5.38E-01	MND	0.00E+00	1.38E-05	1.63E+00	0.00E+00	-4.33E-04
Climate change – LULUC	kg CO ₂ e	1.28E-03	1.80E-04	8.00E-03	9.46E-03	2.12E-05	2.73E-06	MND	0.00E+00	7.93E-06	1.46E-05	0.00E+00	-3.75E-05
Ozone depletion	kg CFC11e	1.02E-07	1.15E-07	8.87E-08	3.05E-07	1.65E-08	1.51E-09	MND	0.00E+00	5.15E-09	7.46E-09	0.00E+00	-1.87E-07
Acidification	mol H*e	9.80E-03	2.07E-03	2.11E-03	1.40E-02	2.96E-04	8.31E-05	MND	0.00E+00	9.26E-05	3.56E-04	0.00E+00	-8.12E-03
Eutrophication, aquatic freshwater 1	kg Pe	4.37E-05	4.24E-06	2.02E-05	6.82E-05	5.73E-07	1.29E-07	MND	0.00E+00	1.94E-07	7.60E-07	0.00E+00	-1.77E-06
Eutrophication, aquatic marine	kg Ne	2.08E-03	6.15E-04	4.75E-04	3.17E-03	8.91E-05	3.66E-05	MND	0.00E+00	2.74E-05	1.46E-04	0.00E+00	-7.66E-04
Eutrophication, terrestrial	mol Ne	2.31E-02	6.79E-03	4.78E-03	3.46E-02	9.84E-04	3.87E-04	MND	0.00E+00	3.03E-04	1.50E-03	0.00E+00	-7.49E-03
Photochemical ozone formation	kg NMVOCe	6.72E-03	2.08E-03	1.46E-03	1.03E-02	3.16E-04	1.00E-04	MND	0.00E+00	9.51E-05	4.43E-04	0.00E+00	-2.47E-03
Abiotic depletion, minerals & metals ²	kg Sbe	1.73E-04	1.37E-05	2.77E-06	1.89E-04	1.20E-06	1.86E-07	MND	0.00E+00	5.61E-07	8.32E-07	0.00E+00	-5.31E-07
Abiotic depletion of fossil resources ²	MJ	5.02E+01	7.64E+00	1.85E+01	7.63E+01	1.09E+00	1.17E-01	MND	0.00E+00	3.43E-01	6.21E-01	0.00E+00	-1.15E+01
Water use ²	m ² e deprived	4.80E-01	2.46E-02	2.84E-01	7.88E-01	4.07E-03	-2.00E-03	MND	0.00E+00	1.22E-03	-3.56E-02	0.00E+00	-1.69E-01

e CA Environmental Product Declaration created with One Click LCA

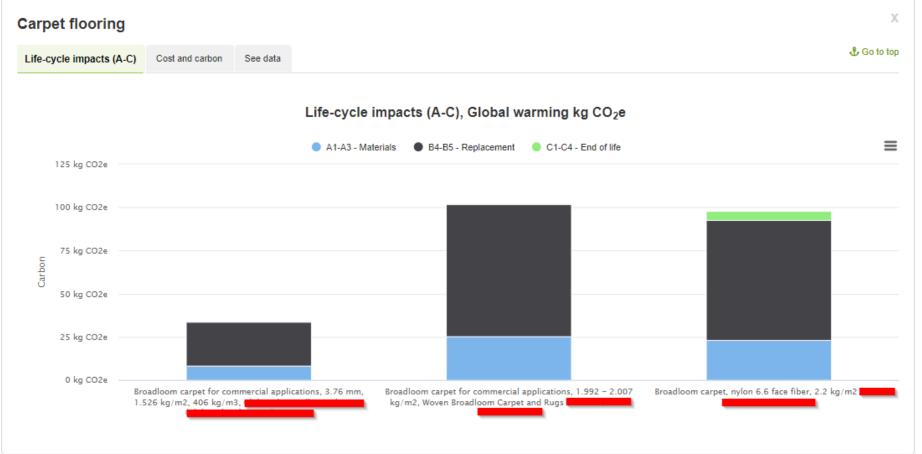
² EN 15804+A2 Disclaimer 2: "The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Comparing EPDs

DECLARED UNIT

Declared unit	1 m²
Mass per declared unit	500 kg/m²

ENVIRONMENTAL IMPACT DATA


Note: additional environmental impact data may be presented in annexes.

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4
GWP – total	kg CO2e	6,58E1	4,89E0	3,86E0	7,45E1	5,49E0	MND	MND	MND	MND	MND
GWP – fossil	kg CO2e	6,48E1	4,89E0	3,69E0	7,33E1	5,54E0	MND	MND	MND	MND	MND
GWP – biogenic	kg CO2e	9,83E-1	2,97E-3	1,49E-1	1,14E0	3,4E-3	MND	MND	MND	MND	MND
GWP - LULUC	kg CO2e	1,78E-2	1,73E-3	1,4E-2	3,36E-2	1,96E-3	MND	MND	MND	MND	MND
Orean dealering and	be crosse	0.005.0	1 105 0	E 00E 7	4 575 0	1.075.0	MAND	MAND	A ANID	LAND.	MAND

Comparing EPDs

Material emission factor sources

EN 15804 EPD

Manufacturer specific or generic tai EPD. Most accurate if product is known

Generic Material values calculated using EN 15804

For example IMPACT, NMD, One Click LCA generic data

Other Embodied carbon data

Generic LCA- sources. Other than sources as per EN 15804 for example ICE

Where information of EPD that complies with EN 15804 does exist or product unknown?

If product known: Product EN-EPD Generic -EPD Technically or regionally similar products EPD or generic data that complies with EN

If product not known:

Product category EN-EPD

Generic informaiton that complies with EN-standard

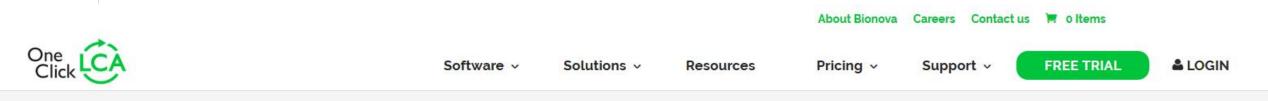
Technically or regionally similar products EPD or generic data that complies with EN

Not recomended: to use anything else than EPDs or other data that has been calculated using EN standard.

LEED v4.1 MR EPD credit

Intent

To encourage the use of products and materials for which life-cycle information is available and that have environmentally, economically, and socially preferable life-cycle impacts. To reward project teams for selecting products from manufacturers who have verified improved environmental life-cycle impacts.

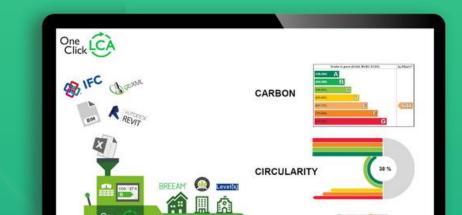

Criteria

Option 1. Environmental Product Declaration (EPD) (1 point) Use at least 20 different permanently installed products sourced from at least five different manufacturers that meet one of the disclosure criteria below. (10 different permanently installed products from three different manufacturers for CS and Warehouses & Distribution Centres).

Acceptable EPDs are: Product specific Type III EPDs – Internally reviewed (confirm ISO 14071, EN 15804 or 21930) AND Industry – wide Type III EPDs that externally verified and published be program operator (confirm with ISO 14025 and EN 15804 or ISO 21930) as well products confirming to ISO 14044.

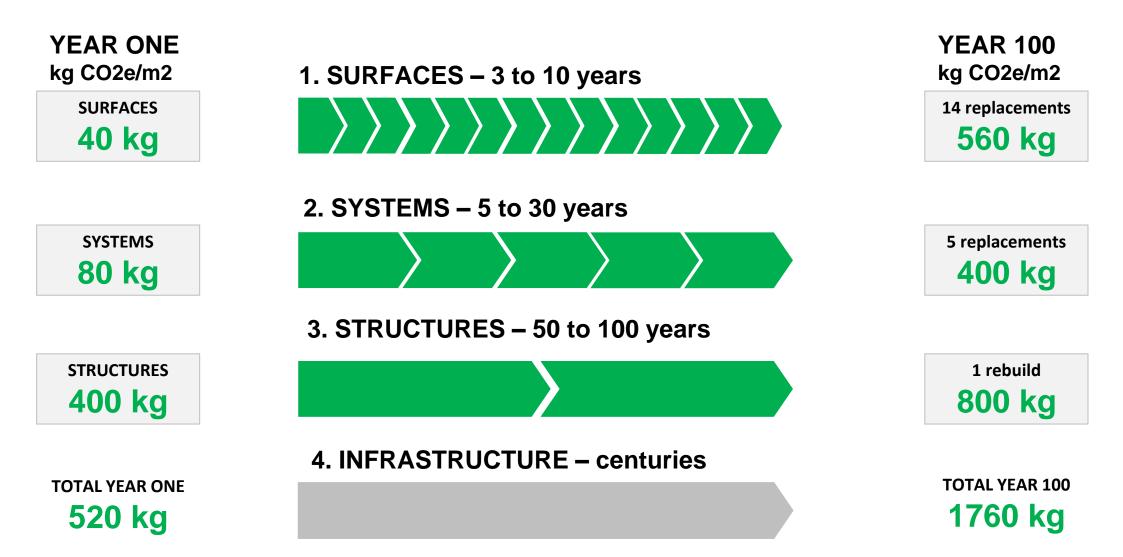
Option 2. Embodied Carbon/LCA Optimization (1 point) \rightarrow Gives credit if you using materials that are to be verified and published in near future or to reduction reports that show reduction in GWP over baseline (read more about it in LEED standard)

Steering emissions in construction projects


Embodied Carbon & Circular Economy Road Tour, World Green Building Week, 23-29 Sept. Join us online or in 6 countries!

Calculate Your Environmental Impacts in Minutes

- **Reduce Cost, Carbon, and Material Use**
- For LEED, BREEAM and more.
- နှ Integrated with Revit, BIM, IESVE and other tools.

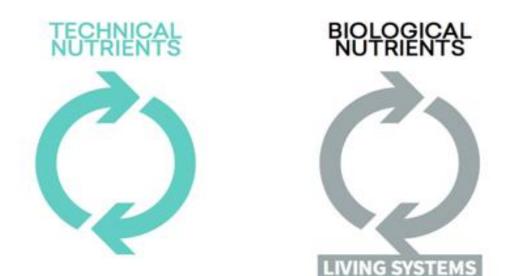

GET A FREE DEMO

Life-cycle design opportunities for materials

EXAMPLE OF EMBODIED CARBON CYCLE OVER A CENTURY FOR AN OFFICE

Developing different materials design and sourcing plans for your projects

LINEAR ECONOMY


TAKE > MAKE > DUMP

0000000

WASTE

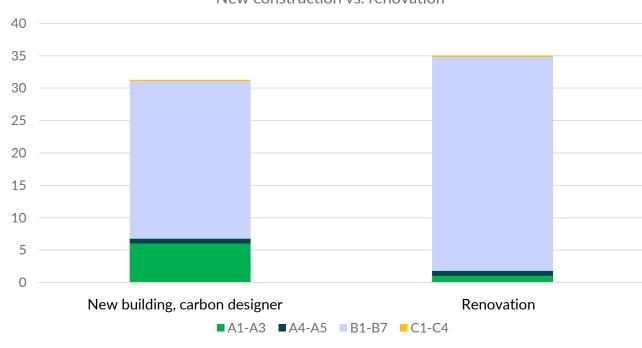
TECHNICAL & BIOLOGICAL NUTRIENTS MIXED UP

Energy from finite sources

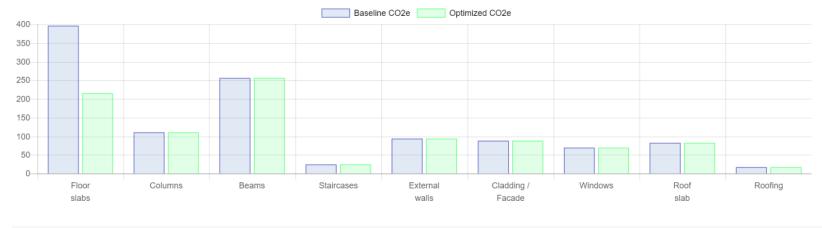
CIRCULAR ECONOMY

energy from renewable sources RETHINK: REDUCE – REPAIR - RECYCLE

https://sustainabilityguide.eu/sustainability/circular-economy/

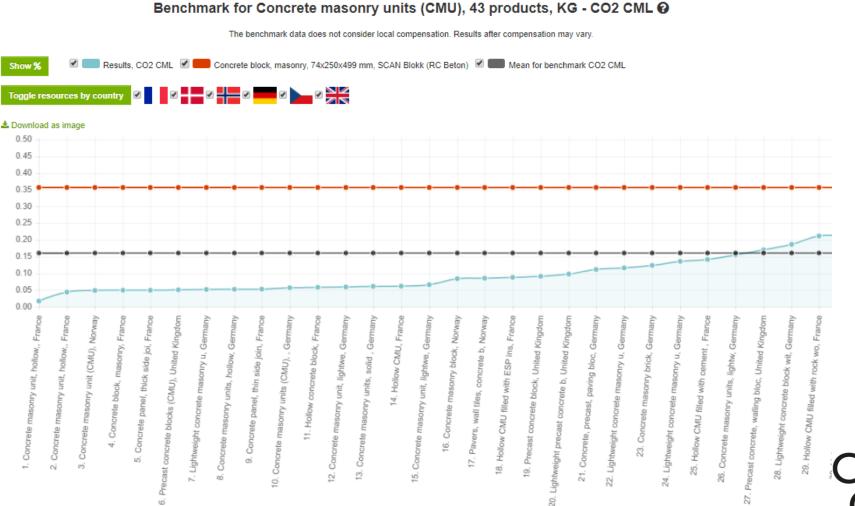

New building vs. Renovation

- All materials that are not replaced are considered as reused → only new materials add emissions
- Energy efficiency is calculated with future energy emissions
- Efficient use of spaces can be counted by using nr. of users or use hours as denominator


New construction vs. renovation

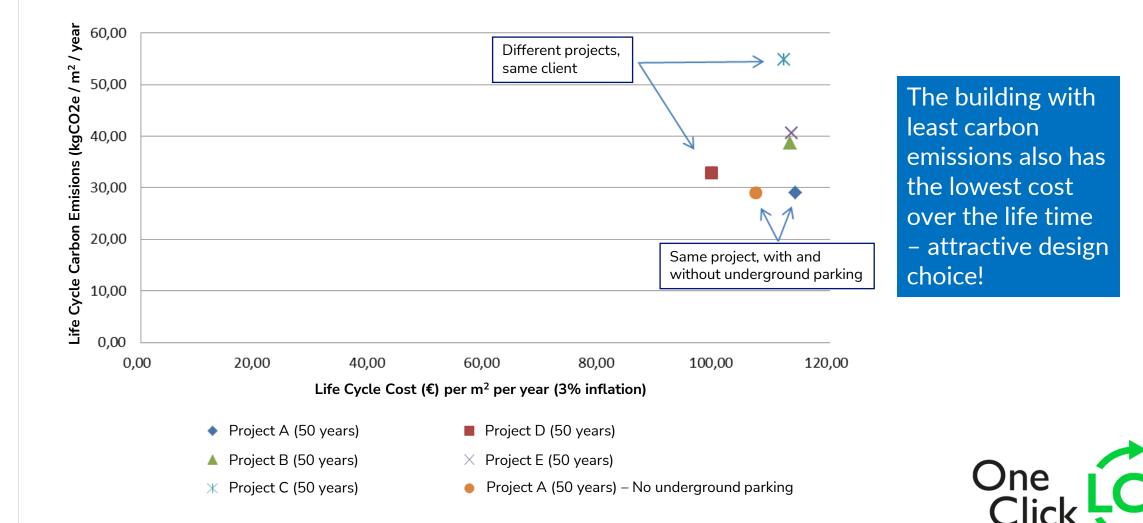
Baseline and early stage comparison

Baseline CO2e 226 kg/m² Optimized carbon impacts CO2e 190 kg/m² Carbon savings -16.09% Project level change -182.2 tons CO2e


BUILDING ELEMENTS AND MATERIALS	Amount	Tons CO ₂ e	Carbon Share
---------------------------------	--------	------------------------	--------------

Choose types of constructions you wish to use, and adjust the materials used in them as desired. You can also save the adjusted data to a design.

- Floor slabs	4000 m2	Share %	215 tn	23%	Carbon intensity	
Hollow-core slab floor assembly, incl. mineral wool acoustic slabs ?	0 m2	0	0 tn	0%	0 kg	Edit
Wooden joist floor assembly ?	4000 m2	100	215 tn	100%	54 kg	Edit
In-situ concrete slab assembly ?	0 m2	0	0 tn	0%	0 kg	Edit



Procurement stage: Comparing material emissions with EPDs helps to find low carbon options

Combine LCA & LCC to find optimal solutions

Example: Apartment building LCA results combined with LCC.

Carbon footprint and LCA gives points in green building certifications

LCA: 3 + 1 pistettä EPDs: 2 pistettä

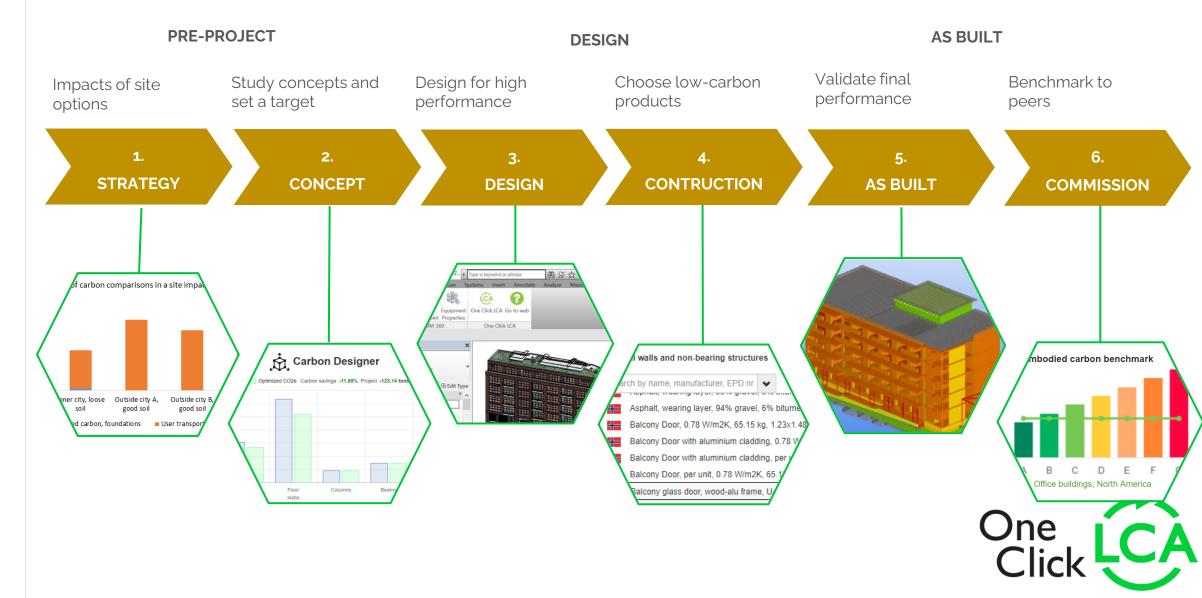
LCA: 5 + 1 credits LCC: 3 credits EPDs: 1 + 1 credits

World's Most Sustainable Office Building – UK (BREEAM)

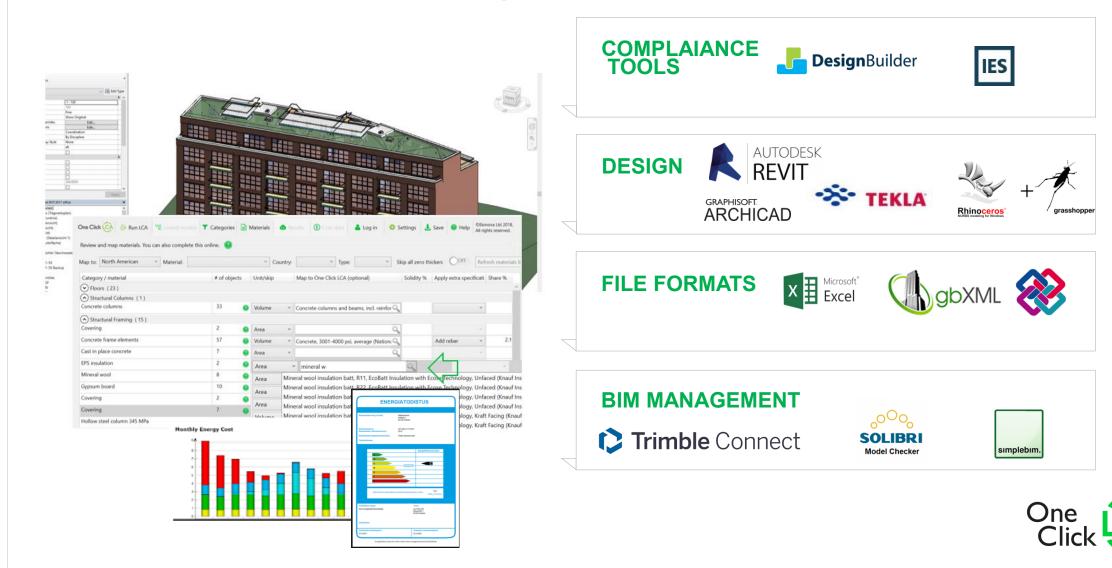
One Click LCA was used to calculate LCA for the World's Most Sustainable Office Building, Bloomberg's New European Headquarters.

Zoo Atlanta Savanna Hall and Exhibit – US (LEED)

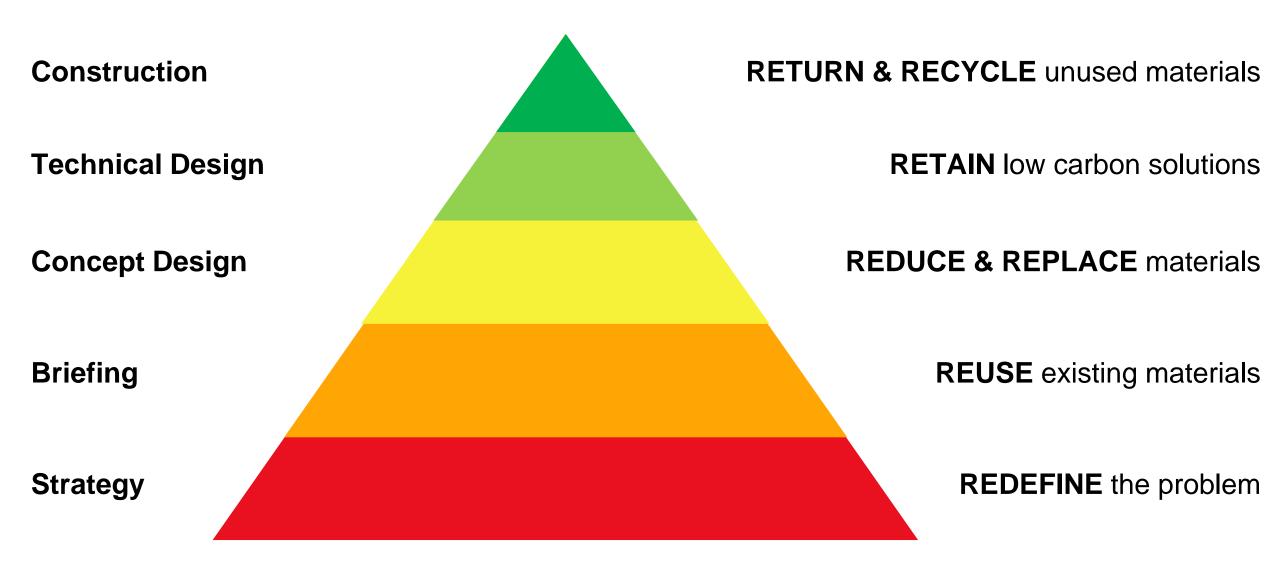
Read this case study on Life Cycle Assessment for LEED v4 and find out how Epsten Group used One Click LCA for their Savannah Hall project.



Shopping center 13 - Finland


Granlund has used One Click LCA to measure Life-Cycle metrics for their Kauppakeskus I3 project in Finland.

Process for steering emissions through different stages of construction projects



Automation from Design Tools

Suggested Embodied Carbon Pyramid to prioritize circular and low carbon design

One Click LCA Demo

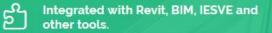
Embodied Carbon & Circular Economy Road Tour, World Green Building Week, 23-29 Sept. Join us online or in 6 countries!

Calculate Your Environmental Impacts in Minutes

- Reduce Cost, Carbon, and Material Use in Construction.
- For LEED, BREEAM and more.

GET A FREE DEMO

Access to the software

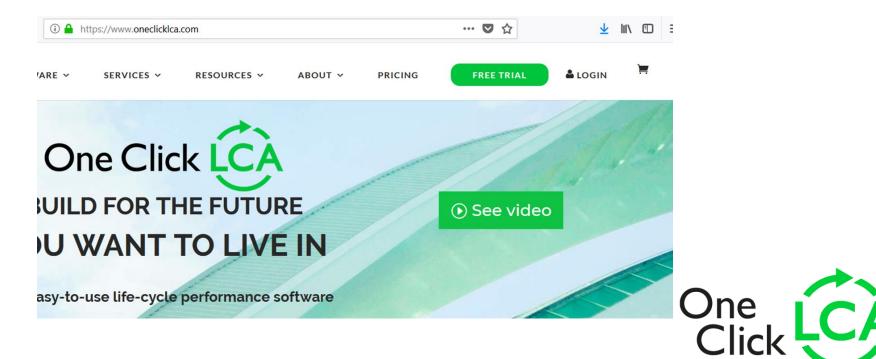


Embodied Carbon & Circular Economy Road Tour, World Green Building Week, 23-29 Sept. Join us online or in 6 countries!

Calculate Your Environmental Impacts in Minutes

- Reduce Cost, Carbon, and Material Use in Construction.
- For LEED, BREEAM and more.

GET A FREE DEMO


Steps to get started

- 1. Create a One Click LCA account
- 2. Create calculation project
- 3. Activate your licence using the license key provided

Create account

- 1. Go to oneclicklca.com
- 2. Choose "Login" from the right corner of the page
- 3. In the login form choose <u>"New user? Register here!"</u>
- 4. Fill in your information
- 5. Activate the account from the link in your email
- 6. Log in to One Click LCA using the same login form

Create project and activate licence

- 1. Select "Create a new project"
- 2. Select "Building"
- 3. Choose building and add basic information for your own building and save.
- 4. Activate your licence by typing the licence key provided by your teacher.
- 5. Press "Get started" and add the Level(s) tool.

Getting started – Inside the project

1/ Click on "Getting Started" button and
2/ name your 1st design

Seneral information		
		Create at least one design to sta calculations. Click Get Started to continue.
✓ Design phase: 0 designs		Choose calculation tools and set up calculations Get st
Available calculation tools - 📜 Get more tools	Create a design	×
Tools available in applied licences	Name, design stage and calculation tools	Scope and type of analysis
Whole life carbon assessment, RICS This tool meets the RICS professional standards and guidance, whole life carbon assessment for the b See all	Name 💿	Pre-defined scopes (if available)
Building Circularity Material efficiency and circular economy - for BREEAM MAT 06 and GRI G4 reporting as well as other p See all	New design Additional information (e.g. description in portfolio)	Project type
		New construction, whole building
Toggle all Next	Stage of construction process (RIBA / AIA stages) 2	Frame type Not determined/not sure
	2 - Concept Design / Schematic Design 🗸	
	Choose the tools you want to use in this design 9	Included parts. Check all applicable. Foundations and substructure
	 Whole life carbon assessment, RICS 	Structure and enclosure
	Building Circularity	 Finishings and other materials External areas

Services

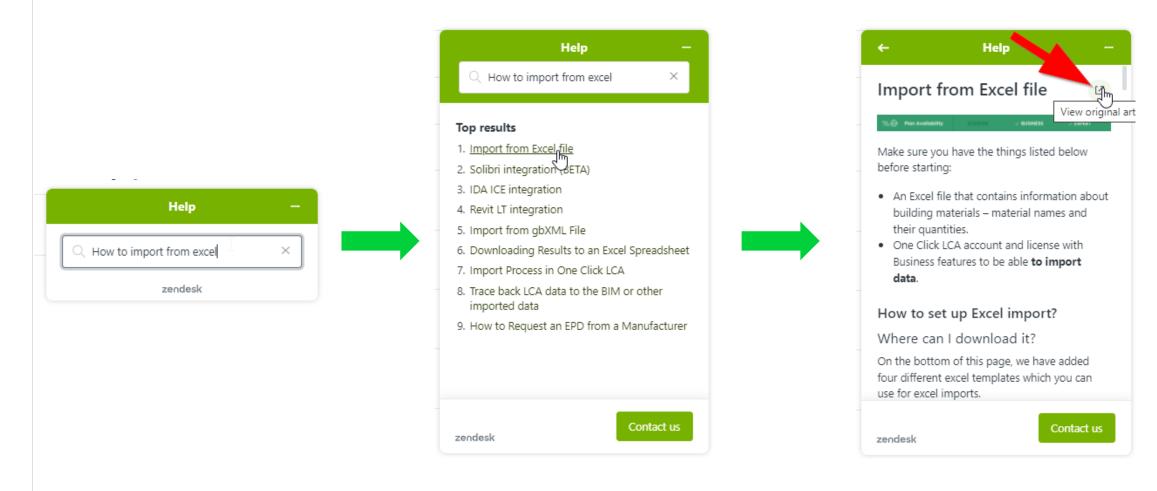
Getting started – Approve or review parameters

- 3/ You can confirm "Use default LCA Parameters" or Review
- Default choices are almost always what you need
- Can always be edited and project is recalculated

Default LCA Parameters	×
Some of the selected tools require additional LCA parameters to be set. LCA Param assumptions, and thus your results. We recommend reading our guide to LCA & LC review and adjust the values. You can come back to change your parameters at any	C Parameters to get familiar with them. You can choose defaults
Back	Review & adjust LCA Parameters Use default LCA Parameters
	Project level parameters are not defined. Set them under the Parameters menu. Changing them later on will lead to results being recalculated.
	+ Add a test dataset І Parameters ▼ 🕹 + Add a design 🖌 Tools ▼
	Unit
	kg CO2e Input data -

All set to start adding data to your 1st DESIGN

Support


😔 One Click LCA - LCA Made Easy 🗙 🕂

← → C 🌔 oneclicklcaapp.com/app/sec/main/list

Q	Ē	*	10	ABP 2	Ф.	*		:
---	---	---	----	----------	----	---	--	---

← → C inclicklcaapp.com/app/sec/main/list			Q & 🖈 🚺	· 📲 🖻 🔻 🌾
A	Public projects			Hide public
1.Undeten X	DEMO - CEEQUAL superhighway This is a read only demo project. Create your own project to edit data, Belgium			2 designs
Updates X tabase update log /eek 45: 183	DEMO - DGNB and LEED project in Germany This is a read only demo project. Create your own project to edit data, Germany, Office buildings, 7 000	DGNB	B 390 kg CO ₂ e/m ²	6 designs
ek 44: 694 ek 43: 232 ek 42: 182 ek 41: 119	DEMO - Energie Carbone bâtiment résidentiel France This is a read only demo project. Create your own project to edit data, France, Free-time residential buildings, 3 500	E ⁺ c−	C 533 kg CO ₂ e/m ²	2 designs
ek 40: 210 More C More information	DEMO - Env RE2020 logement collectif France This is a read only demo project. Create your own project to edit data, Paris 01, France, Apartment buildings, 4 000		690 kg CO ₂ e/m ²	2 designs
ate in the Swedish constructions that use Boverket data. The update also cts the Swedish constructions which were using 'Rostfri stålarmering, 72% skrotbaserad' as	DEMO - Full Building Life Cycle Carbon Study EN15978 This is a read only demo project. Create your own project to edit data, Ireland, Office buildings, 12 430		F 762 kg CO ₂ e/m ²	1 designs
efault reinforcement option+ More	DEMO - LEED and Levels project in Europe This is a read only demo project. Create your own project to edit data, Belgium, Office buildings, 6 000		A 299 kg CO ₂ e/m ²	3 designs
ree low carbon services playbook explains 29 services that you can provide with One LCA and grow your busines+ More pre information	DEMO - LEED v4 office building in the Middle East This is a read only demo project. Create your own project to edit data, United Arab Emirates, Office buildings, 6 000	\bigcirc	C 411 kg CO ₂ e/m ²	3 designs
s new in One Click LCA August 2021? August release, we are excited to present to you compliance updates of RE2020.	DEMO - New BREEAM UK NC 2018 office in London This is a read only demo project. Create your own project to edit data, United Kingdom, Office buildings, 7 569,58	BREEAM	A 268 kg CO ₂ e/m ²	7 designs
deklaration, construction f + More re information	DEMO - New BREEAM residential building in Krakow This is a read only demo project. Create your own project to edit data, Poland, Apartment buildings, 7 000	BREEAM	A 318 kg CO ₂ e/m ²	3 designs
we introduced an update to the Klimatdeklaration tool we introduced an update to the Klimatdeklaration tool which includes:	DEMO - New GLA office in London This is a read only demo project. Create your own project to edit data, United Kingdom, Office buildings, 7569,58		C 507 kg CO ₂ e/m ²	3 designs
ulation of results with aver+ More re information	DEMO - New LEED v4 office in Asia This is a read only demo project. Create your own project to edit data, China, Office buildings, 7 000	\bigcirc	A 180 kg CO ₂ e/m ²	3 designs
+ Show all	DEMO - New LEED v4 office in China This is a read only demo project. Create your own project to edit data, China, Office buildings, 6 000		73 k_ 02e/m ²	3 designs
One Click LCA	DEMO - New LEED v4 office in New York This is a read only demo project. Create your own project to edit data, United States, Office buildings, 70 000		A 3 kg CO ₂ e/m ²	5 designs
One Carles	DEMO - New LEED v4 office in Toronto This is a read only demo project. Create your own project to edit data, Canada, Office buildings, 6 500	\bigcirc	E 436 kg CO ₂ e/m ²	designs
	DEMO - New LEED v4 project in South America This is a read only demo project. Create your own project to edit data, Brazil, Office buildings, 7 500		B 318 kg CO ₂ e/m ²	3 d€ 🧿 Hel
O 🛱 🕜 📙 03 Presentations 📃 Session 2	🌀 One Click LCA - LC 😰 SG Contest 1st lect	^ ts	😻 🖻 🖮 🦽 🕬 .	-f/3 ENG 06/12/2021

Support

Or visit our help centre directly at: https://oneclicklca.zendesk.com/

Support

Unable to find an answer in the help centre?

- 1. Contact your university's main user (teacher)
- 2. Your teacher will either have an answer or contact the One Click LCA support team

