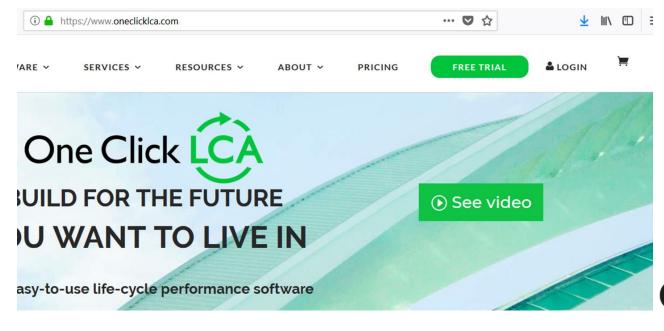
Exercises

Saint-Gobain Student Contest 2022

Life Cycle Assessment lecture – Session 2

Marios Tsikos, One Click LCA

8th December 2021


Steps to get started

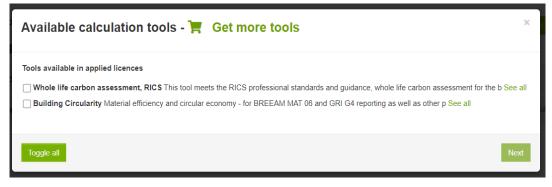
- 1. Create a One Click LCA account
- 2. Create calculation project
- 3. Activate your licence using the license key provided

Create account

- Go to oneclicklca.com
- 2. Choose "Login" from the right corner of the page
- 3. In the login form choose "New user? Register here!"
- 4. Fill in your information
- 5. Activate the account from the link in your email
- 6. Log in to One Click LCA using the same login form

Create project and activate licence

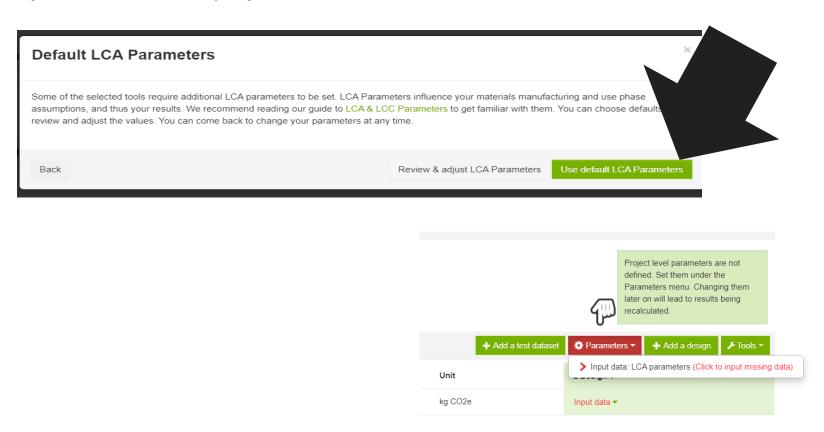
- 1. Select "Create a new project"
- 2. Select "Building"
- 3. Choose building and add basic information for your own building and save.
- 4. Activate your licence by typing the licence key provided by your teacher.
- 5. Press "Get started" and add the Level(s) tool.


Getting started – Inside the project


- 1/ Click on "Getting Started" button and2/ name your 1st design
- > General information

Create at least one design to start calculations. Click Get Started to continue

✓ Design phase: 0 designs
Choose calculation tools and set up calculations
Get started

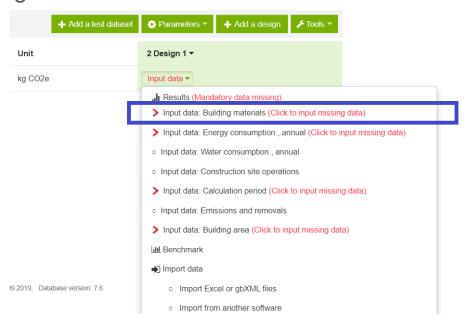


Getting started – Approve or review parameters

3/ You can confirm "Use default LCA Parameters" or Review

- Default choices are almost always what you need
- Can always be edited and project is recalculated

Exercise 1: Creating & comparing substructure s


Inserting data – Manual entries row by row

There are 3 ways of importing data:

- 1/ Manually add resource row by row
- 2/ Import Bill of Materials (BoM) from BIM (eg Revit), energy models (eg DesignBuilder or IES) or Excel and gbXML files
- 3/ Bring in typical quantities for different building parts or whole buildings with Carbon Designer

Let's start with manual entries:

- 1/ While you are on project main page click on "Input data" and you will see all these options:
- 2/ Click on "Input data: Building materials"

Inserting data – Finding and selecting materials

Now in order to find the materials you need, you can play around with the filters on the top of the page.

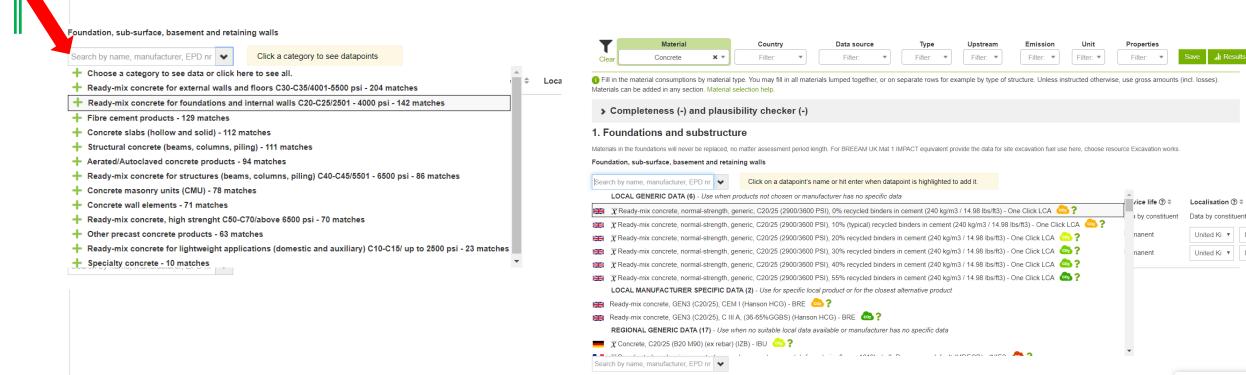
Select the following:

1/ Material: Concrete

2/ Country: Ireland

3/ Type: **Generic**

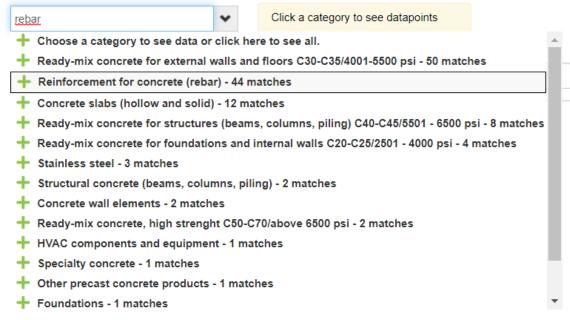
1 Fill in the material consumptions by material type. You may fill in all materials lumped together, or on separate rows for example by type of structure. Unless instructed otherwise, use gross amounts (incl. losses). Materials can be added in any section, with exception of windows, doors and building technology and installations, which are only addable through their respective sections. Material selection help.


When you activate the filters, remember to adjust / delete them later for other searches!!!

Inserting data - Manual entries row by row

Let's start with manual entries – Let's add some typical concrete for Foundation!

- 1/ While you are on project main page click on "Input data" and you will see all these options:
- 2/ Click on "Input data: Building materials"
- 3/ Go to "Foundations, sub-structure, basement and retaining walls" and click on the drop down list
- 4/ Click on "ready mix concrete for Foundations and internal walls"
- 5/ Select "Ready-mix concrete, normal-strength, generic, C20/25 (2900/3600 PSI), 0% recycled binders in cement (240 kg/m3)"
- 6/ add 500 m³ (then click SAVE and see results preview)



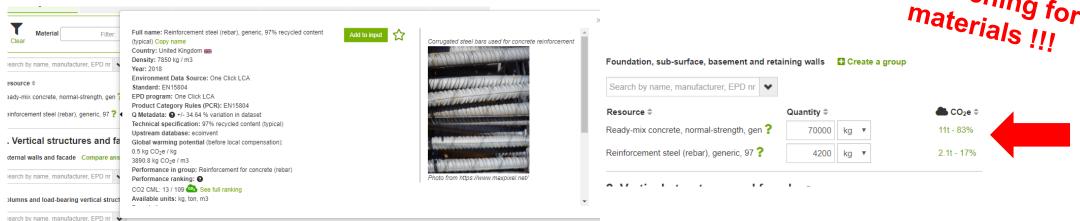
Inserting data – Manual entries row by row

Let's add some Reinforcement to the foundation

- 1/ This time **Type**: Rebar (make sure your filters are reset!!!!)
- 2/ Select "Reinforcement for concrete (rebar)"
- 3/ And them "Reinforcement steel (rebar), generic, 97% recycled content (typical)"
- 4/ add 75,000 kg (Click SAVE after see results carbon clouds)

Foundation, sub-surface, basement and retaining walls

1. Foundations and substructure


Inserting data – Manual entries row by row

Summary of materials and quantities (Click SAVE after):

Materials	Quantities
Ready-mix concrete, normal-strength, generic, C20/25 (2900/3600 PSI), 0% recycled binders in cement (240 kg/m3)	500 m3
Reinforcement steel (rebar), generic, 97% recycled content (typical)	75,000 kg

Remember to adjust / delete the filters when searching for materials in

You can see more info for each datapoint by clicking on the "?" next to its name

In addition to the filters (or instead), you can also search materials directly using for example:

- 1/ EPD name or EPD number
- 2/ Manufacturer

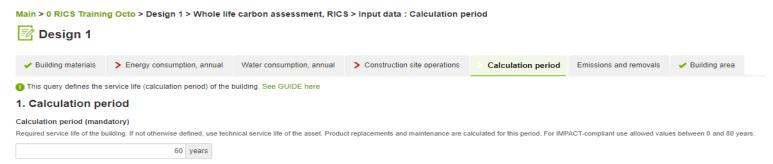
Inserting data – Editing default values

For each data point default values are generated, based on project parameters, including:

- transportation to construction site distance & mean used
- Service Life (not adjustable in foundation level)
- Localisation options

Let's edit the following:

Transportation distance for ready mix concrete to 250 km. Save and see the impact.



Inserting data – Add more info

Well done!

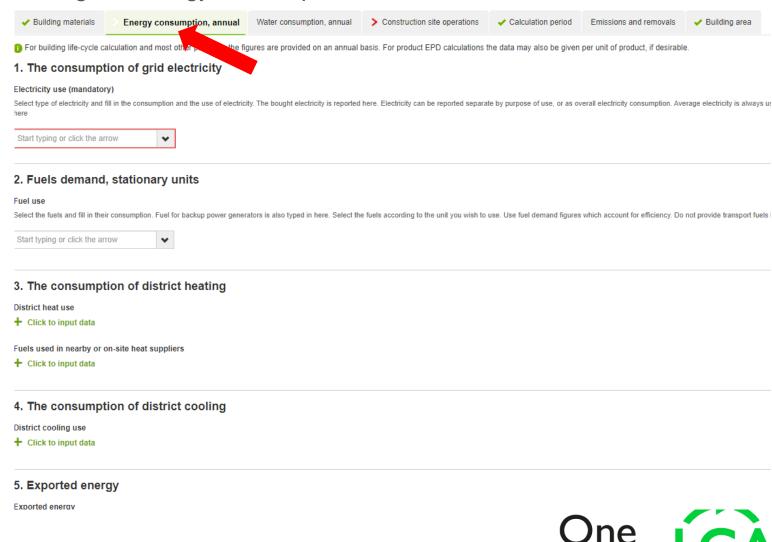
Now, let's add some more info in our project:

Go to calculation Period Tab and set it to 60 years:

Go to the Top and select Building area. From the dropdown list choose a suitable area definition.
 CLICK SAVE

<u>™</u> Design 1 B	E⊈ Design 1 BREEAM®											
Building materials	Energy consumption, annual	Water consumption, annual	Construction site operations	Emissions and removals	Building area							
Provide building area d	data for benchmarking and calculat	tion purposes. See GUIDE here										
1. Area definitions												
Building area (mandatory) Please always provide gross internal floor area to get benchmark feedback. These figures are always given excluding parkings and motor vehicle circulation areas, but including basements. You ma												
Start typing or click the a	rrow Click o	on a datapoint's name or hit enter	when datapoint is highlighted to a	Manda	tory data missing. Clic							
Number of users User days User hours Annual visitors Bruto vloeroppervial	r Area (IPMS/RICS) ? kte (BVO), the Netherlands ? BRI (DIN 277), Germany ?	Î										

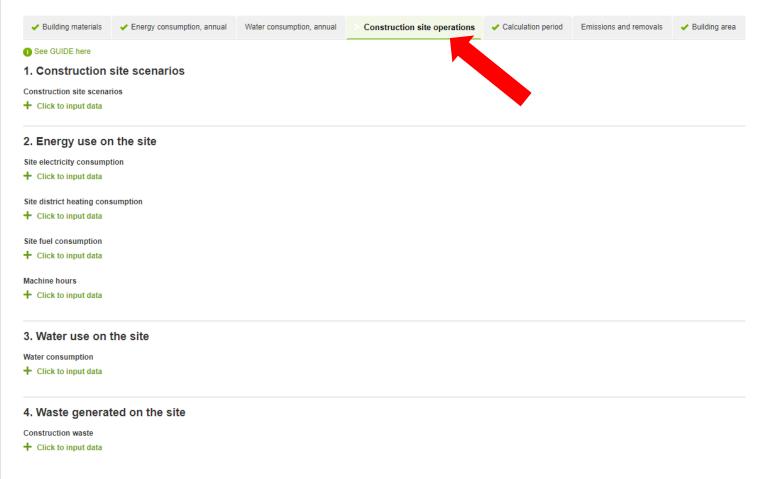
Inserting data – Add Energy use data


To include the Energy consumption data go to Energy consumption, annual tab:

The building has electricity consumption 50 kWh/m2 for total regulated energy consumption.

Assuming it is all electric.

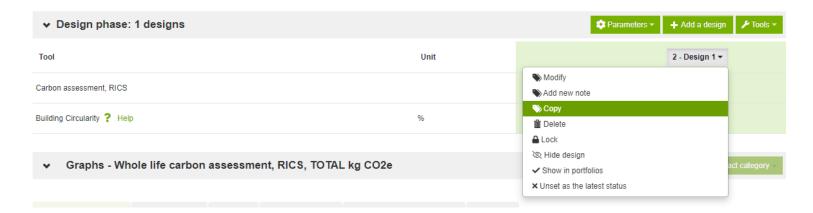
The building has also PV that produces 20 kWh/m2 so deduct this from the figure.


Half of the generated energy is consumed on site and half of it is exported.

Inserting data - Construction site operation data

Choose Site Scenario, select Average Site impacts - Temperate Climate (North) and add the BUILDING AREA (m2)

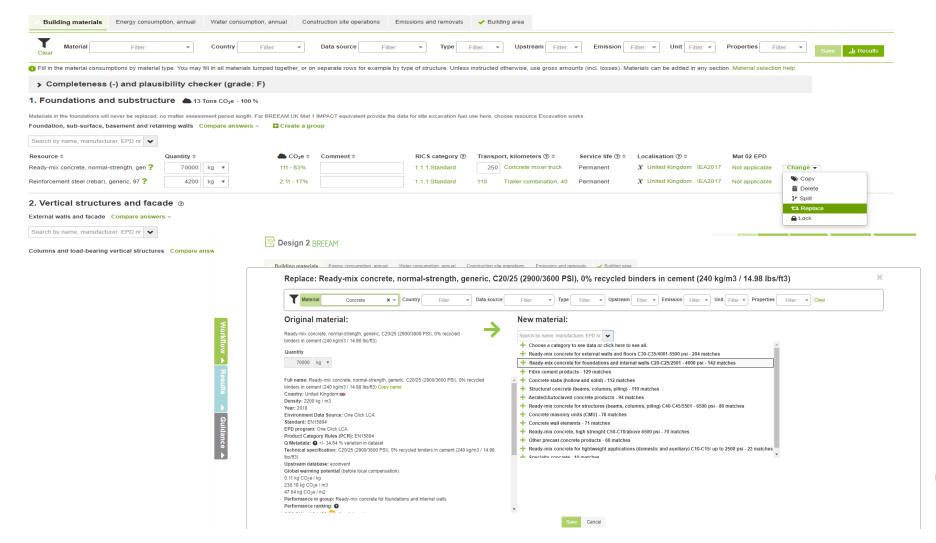
Note! During design you can use scenarios and post construction you can use actual data from the contractor.



Now we are doing a comparison

1/ Click Your Project name on the top bar to get to the main project page

Main > 0 RICS Training Design 1	Octo > Design 1 > Whole life o	carbon assessment, RICS >	· Input data : Building materia	ils		
✓ Building materials	> Energy consumption, annual	Water consumption, annual	> Construction site operations	> Calculation period	Emissions and removals	> Building area
Clear Material	Filter: Country	Filter: Data s	ource Filter. ▼	Type Filter: ▼ U	Upstream Filter. ▼ CO2e	Filter: Unit Filte


2/ On main page click the Design name and make a copy. Give the new design a name and click Add:

Edit data:

- 3/ Click the "input data" tab for your second (copied) design to edit the Building Materials.
- 4/ Replace the Concrete mix with another one with 20 % recycled binders. CLICK SAVE!

Compare Results!

5/ Go back to the main Project page by clicking your project name on the top bar.

Main > 0 RICS Training Octo > Design 1 > Whole life carbon assessment, RICS > Input data : Building materials

Design 1

Building materials

Finergy consumption, annual

Water consumption, annual

Water consumption, annual

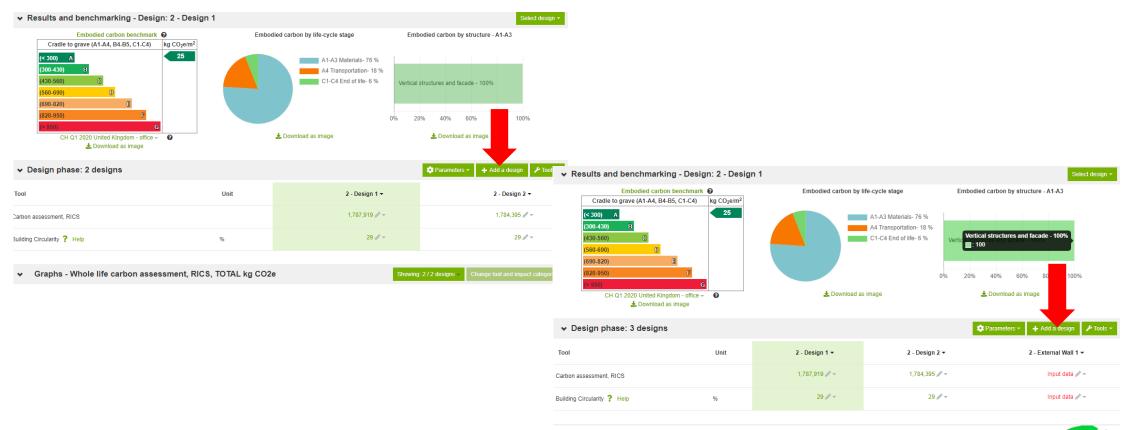
Construction site operations

Calculation period

Emissions and removals

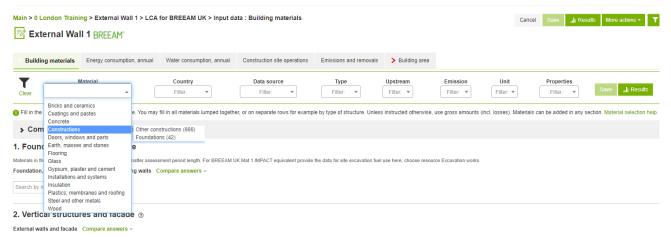
Building area

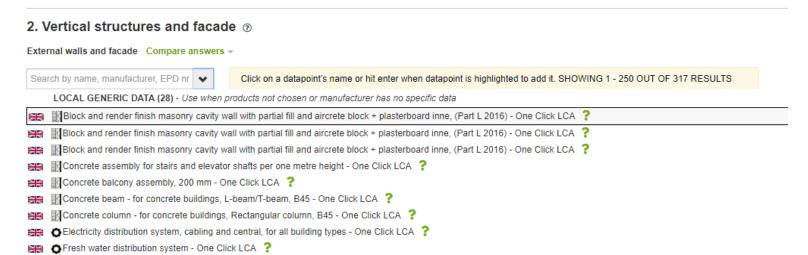
6/ Compare results. Which one is better? Check what graphs are available.



Exercise 2: External wall using constructions

Inserting data – Using Constructions


Let's create another DESIGN and use CONSTRUCTIONS to create an external wall: 1/ From the main project page click "+Add a design" tab 2/Give design a name (for example External Wall 1)



Input External Wall construction:

- 3/ Click the "input data" tab for the External Wall to edit the Building Materials.
- 4/ Using filters find Constructions → External Wall constructions

5/ Go to 2. vertical structures and Façade and select "Block and render finish masonry cavity wall with partial fill and aircrete block + plasterboard inner leaf (Part L 2016)" and add 1000 m2 as qty

Input External Wall construction:

6/ Also add another wall construction "Rainscreen on reinforced concrete, U-value 0.23, (Part L 2016)" add 1000 m2 as qty.

7/ Click SAVE and compare two types. Which one is better?

8/ Click the + signs to see the entire element. Which element has lower embodied carbon? DELETE the worst one (Change tab on the end of the row)

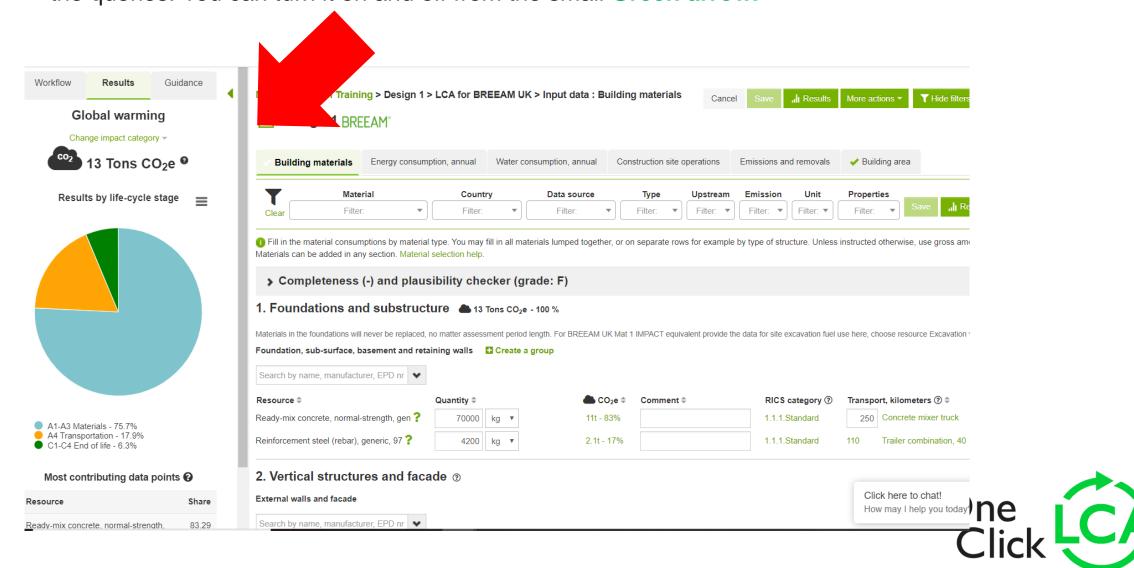
9/ You can unbundle constructions and Replace items with better materials if you want from same place (repeat replace that was done for foundation exercise):

Change ▼

Сору

Delete

1□ Replace



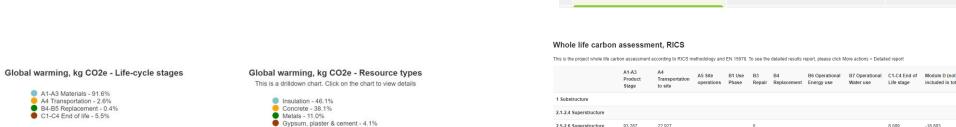
Exercise 3: Check the results

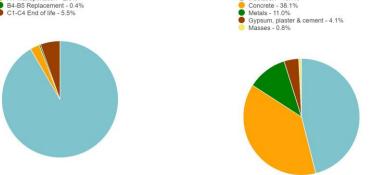
Review results

You can see simplified results and most contributing materials on the side bar when in the queries. You can turn it on and off from the small **Green arrow**.

Review results

Now let's see all the results!


Click on "Results" button on the top right corner. If any mandatory DATA is missing, go and add (Like area m2)



Building area

Emissions and removals

In the results page, you get a range of graphs and tables.

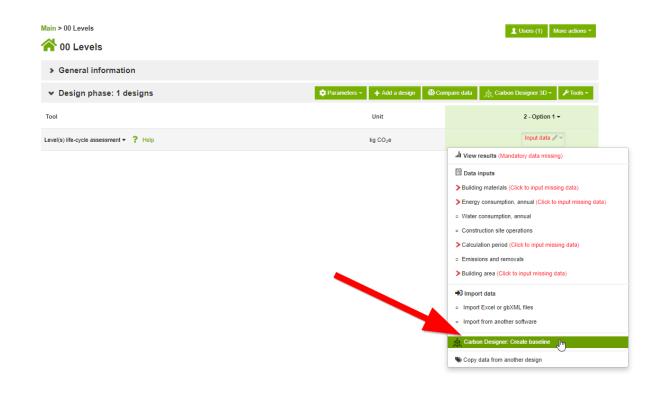
	Product Stage	Transportation to site	A5 Site operations	B1 Use Phase	B3 Repair	B4 Replacement	B6 Operational Energy use	B7 Operational Water use	C1-C4 End of Life stage	Module D (not included in totals)	TOTAL kg CO2e
1 Substructure											
2.1-2.4 Superstructure											
2.5-2.6 Superstructure	93,287	22,927			0				8,089	-18,803	124,302
2.7-2.8 Superstructure											
3 Finishes											
4 Fittings, furnishings & equipments											
5 Services (MEP)											
6 Prefabricated buildings and building units											
7 Work to existing building											
8 External works											
Other materials - TOTAL											
Site, energy and water			151,717				1,508,376				1,660,093
TOTAL kg CO2e	93,287	22,927	151,717		0		1,508,376		8,089	-18,803	1,784,395
+ Project reporting information											
Assessment of biogenic carbon and mass of materials, RICS											
his table shows the impacts of	construction ma	aterials for the biogeni	c carbon and m	ass categor	es						
						A1-A3 Produ	ct Stage		B1 Us	e Phase	
Mass of raw materials kg						742,000					
Biogenic carbon storage kg	CO ₂ e bio					0					

Calculation period

Many graphs can be adjusted, and all can be downloaded.

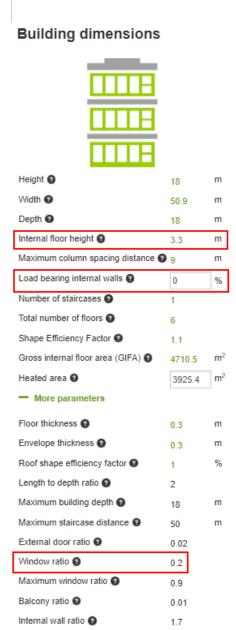
Earth, masses and stones
Insulation
Concrete
Steel and other metals

Exercise 4: Carbon Designer



Creating a baseline

1/ At the project page, click on "Input data" and then "Carbon Designer: Create baseline".


2/ Define the materials scope, the building type, size, number of floors and structural material. (Office, 5,000m2, 5 floors, 60 years, 1 basement, concrete frame)

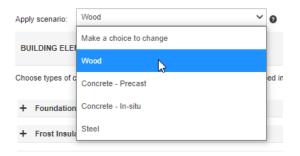
3/Click "Calculate areas"

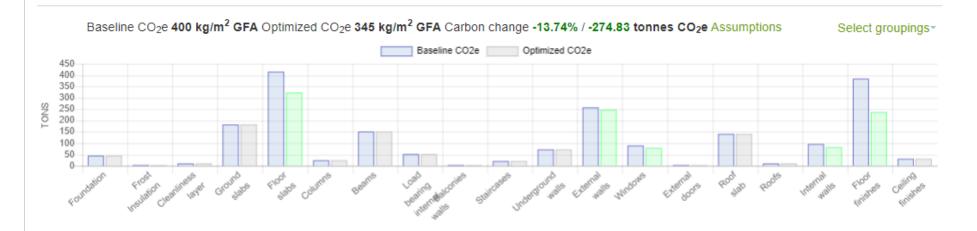
Project materials scope **Building parameters** Foundations and substructure Ground Slab Structure Enclosure Finishes Services Building type, size and number of floors UK buildings, Part L 2016 Building type Office buildings Total gross floor area (GFA) 5000 Number of above ground floors 5 Calculation period @ years More options Number of underground heated floors Number of underground unheated floors Required foundation type and depth Show private constructions Scenarios Baseline scenario Concrete - In-situ Comparison scenario Not applied

Creating a baseline

External paved areas ratio

Building structures

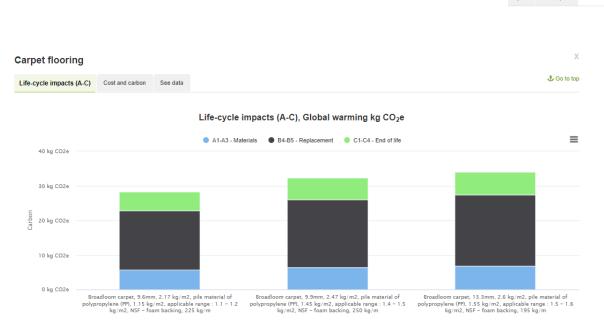

Edit areas if necessary.		
Foundations and substructu	re	
Foundation	5000	m ²
Frost Insulation	138	m
Cleanliness layer 🕢	833	m ²
Ground Slab		
Ground slabs	833	m ²
Structure		
Floor slabs 2	4167	m ²
Columns @	454	m
Beams 🕢	756	m
Load bearing internal walls ②	0	m ²
Balconies 🕢	42	m ²
Staircases	22	m
Enclosure		
Underground walls	496	m ²
External walls 🗿	1631	m ²
Windows	833	m ²
External doors	17	m ²
Roof slab 🚱	833	m ²
Roofs 2	833	m ²
Finishes		
Internal walls ②	4218	m ²
Floor finishes	3925	m ²
Ceiling finishes	3925	m ²


- **4**/ Review the calculated areas.
- 5/ There is a requirement for the building to have a **net floor height of 4m**. Update the relevant parameter.
- **6**/ The structural engineer has advised there will be several concrete cores resulting in **20**% of the internal walls being load bearing walls.

Optimize design

- 1/ Start changing the constructions in categories with high impact. Change windows to timber frame, internal walls to timber studs, external walls to brick slips and medium dense blocks, carpets to vinyl etc.
- 2/ "Restart design". When results are ready, apply a wood scenario.
- 3/ "Save design to query"

Exercise 5: EPD comparison



Compare data feature

1/ Add the following carpet products in your design

- Broadloom carpet, 9.6mm, 2.17 kg/m2, pile material of polypropylene (PP), 1.15 kg/m2, applicable range: 1.1 1.2 kg/m2, NSF foam backing, 225 kg/m3 (Vebe Floorcoverings B.V.)
- Broadloom carpet, 9.9mm, 2.47 kg/m2, pile material of polypropylene (PP), 1.45 kg/m2, applicable range: 1.4 1.5 kg/m2, NSF foam backing, 250 kg/m3 (Vebe Floorcoverings B.V.)
- Broadloom carpet, 13.3mm, 2.6 kg/m2, pile material of polypropylene (PP), 1.55 kg/m2, applicable range: 1.5 1.6 kg/m2, NSF foam backing, 195 kg/m3 (Vebe Floorcoverings B.V.)
- 2/ For each of them click on the "Add to compare" button within their data cards
- 3/ Click on the "Compare data" button at the top right of your screen

Licenses - @ HELP - 1 Marios

Direct comparison within the model

- 1/ Add the following gypsum board products in your design
- Gypsum board, fire resistant, 15 mm, 12.4 kg/m2, 823 kg/m3, 0.25 W/mK, Placoflam 15 (PPF 15) (Saint-Gobain Placo Ibérica)
- Gypsum board, fire resistant, 12.5 mm, 12.8 kg/m2, 1024 kg/m3, Diamant 12.5 mm (Knauf)
- Gypsum plasterboard, high strength, fire resistant, 19 mm, 16.5 kg/m2, GIB FYRELINE 19MM (GIB)
- 2/ Save your design

3/ Check the previewed results in the same page

Note: Commercial products selected from different countries to avoid direct comparison during the training

Gypsum board, fire resistant, 15 mm ?	1000	m2 🗸	×	15	mm	4,8t - 3%
Gypsum board, fire resistant, 12.5 ?	1000	m2 🗸	×	12,5	mm	6t - 4%
Gypsum plasterboard, high strength, ?	1000	m2 🕶				7,6t - 5%

Make sure the compared products are functionally equivalent

Performance ranking feature

1/ Add a generic floor screed material e.g. "Modified mineral mortars, German average, Group 1, as grouting, 1600 kg/m3, EPD coverage: 800 - 1700 kg/m3 (DBC/IVK/VdL)"

2/ Assuming you used this as a baseline you are now looking for a product EPD that performs better. Open the data card by clicking on the ? icon, go to the "Environmental profile" section and click on the "performance ranking.

	Show empty rows					
 General information 	1					
Country	Germany ==					
Manufacturer	DBC/IVK/VdL					
Material type	Mortar (masonry/bricklaying)					
 Datapoint backgrou 	nd information					
> Description						
 Technical character 	istics					
 Environmental profi 	ile					
Global warming potential (A1-A3) before local compensation	0.47 kg CO ₂ e / kg 744.0 kg CO ₂ e / m ³ 11.16 kg CO ₂ e / m ²					
impact categories (A1- A3)	Show					
Performance in group	Mortar (masonry/bricklaying)					
Performance ranking	OC2 CML: 259 / 397 See full rapking					
Q Metadata	+/- 34.64 % variation in dataset					

Performance ranking feature

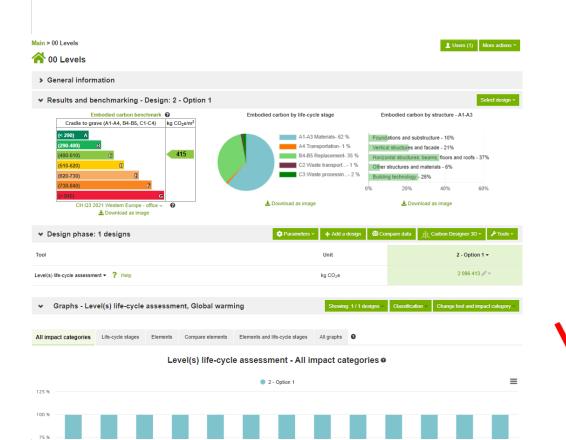
- 3/ In the new window, select the average performance in All countries to use as a benchmark.
- 4/ Select to show the products that perform 50% better than the benchmark
- 5/ Scroll down until you find a suitable product

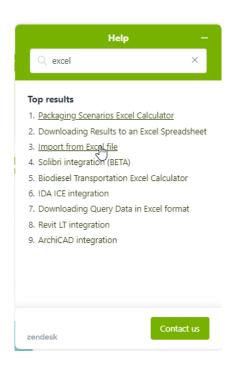
Products below benchmark	product	0	77 - Show products

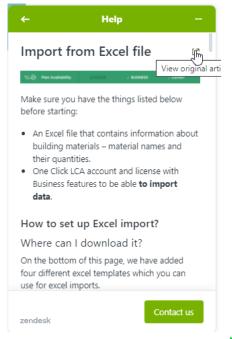
Benchmark for Mortar (masonry/bricklaying) set as 0.512 kg CO2e /kg

Products below benchmark	product	0	77 - Show products	285 - Show products
Products less than -20 % of benchmark	product	0	41 - Show products	215 - Show products
Products less than -30 % of benchmark	product	0	21 - Show products	176 - Show products
Products less than -40 % of benchmark	product	0	18 - Show products	159 - Show products
Products less than -50 % of benchmark	product	0	17 - Show products	144 - Show products

Make sure the compared products are functionally equivalent

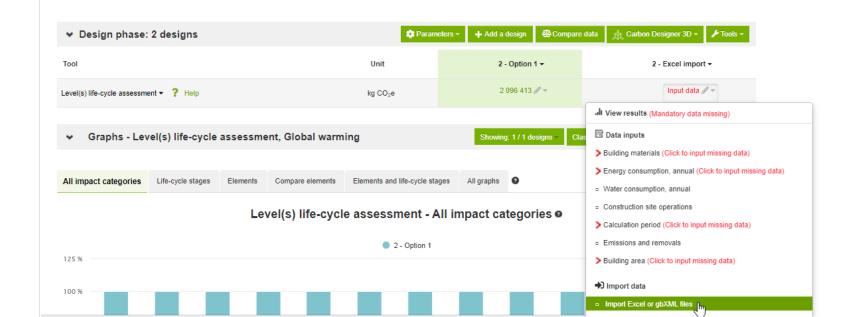



Exercise 6: Excel Import Process



Preparing the excel import

- 1/ At any One Click LCA page, click on the help button at the bottom right corner.
- 2/ Type "excel" and click on the "Import from excel file" option.
- 3/ Open the article in a new tab and scroll to the bottom of the page. Download "OCL_import_form_Building_Metric_v1_4-4.xlsx".


Preparing the excel import

- 1/ Open the template and delete all irrelevant columns e.g. I to X
- 2/ If any column for classification system is left in, then fill this information for all rows. E.g. Level(s) classification.
- 3/ Add any other materials if you wish in another row.
- 4/ Save the file

-4	Α	В			li li	Н		J K		IVI	V U		H
	CLASS	IFCMATERIAL	QUANTII QTY_TY THICKN			WASTA		OTALCC BREEAM Int'l Mat 01 classification (us		BREEAM UK / RICS Classification (use t	BYGNINGSDEL (use to cl	Talo2000 Rakennusosa (use to	LO2
		Precast Concrete - C30/37	40 M3		80 Walltype #1	1	500	 20000 External walls (envelope, structure and finish 	es)	1 Not classified	0 VVS-installasjoner, generelt (:	30 1122 Tuennat ja vahv.: Pysyvät	1122
	FOUNDATION		2.34 M3		30 Foundations	3		Upper floors (including horizontal structure)		6	Grunn og fundamenter (21)	21	
		Al Ready-mix concrete C25/30	6.72 M3		80 For retaining walls	5.5		External walls (envelope, structure and finish	es)	1	Yttervegger (23)	23	
		Al Reinforcement steel	12000 KG		For retaining walls	2		Structural frame (vertical)		5			
		Al Glass wool, 80 kg / m3	48 M3		150 Wall type #1	3		Structural frame (vertical)		5			
7	SLAB	Ready-mix concrete C25/30	10 M3		80 Foundations								
	SLAB	Hollow-core slab, 250 mm	25 M3		80								
9	SLAB	Leveling screed	10 KG										
	COLUMN	Structural steel, hollow sections	10 KG		Supporting structures								
	OTHER	Timber	1.4 M3		Wooden shading structures								
12	INTERNAL WA	L Gypsum boards, 12,5 mm	170 M2	12.5	For internal walls								
13	INTERNAL WA	L Steel studs for 400 mm spacing	170 M2		For internal walls								
14	ROOF	Bitumen roofing	200 M2		Roofing								
15	STAIRS	Ready-mix concrete C25/30	14 M3		80 Stairs; cast on site								
16	STAIRS	Reinforcement steel	1600 KG		Stairs; cast on site								
	DOOR	Internal door, wood	20 M2										
18	WINDOW	Wood-alu triple glazed window	10 M2										
19	COVERING	Acoustic ceiling tiles	90 M2	20									
20	FINISH	Indoor paint	120 KG		Paint type to be defined								
21	SITE	Asphalt, AB	17 M3		30 Parking area								
22	SITE	Gravel	50 M3		30 Parking area								
23													

Importing the excel import

- 1/ At the input data drop down list, click on the "Import Excel or gbXML files" option.
- 2/ Choose the design to upload the data. You can choose to upload to a new design.
- 3/ Review the grouping rules and click continue.
- 4/ Review any identified materials and map any unidentified ones and click continue.
- 5/ Review the results

